YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The End Problem of Incompressible Elastic Cylinders

    Source: Journal of Applied Mechanics:;1994:;volume( 061 ):;issue: 001::page 30
    Author:
    Yun Ling
    ,
    P. A. Engel
    ,
    J. A. Geer
    DOI: 10.1115/1.2901417
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The end problem of incompressible elastic cylinders is formulated and is solved by an eigenfunction expansion method. Various methods for the determination of the unknown coefficients of the expansion are studied and a variational approach which minimizes the total potential energy is suggested. A transformation is introduced for a better calculation of the stiffness of a cylinder. The Benthem and Minderhoud (1972) expansion is used to describe the interfacial stress distributions. The difficulties of using this expansion for thin cylinders are overcome by utilizing the Cesaro sum (Powell and Shah, 1972). Numerical results for the compression of bonded rubber cylinders are presented and discussed.
    keyword(s): Cylinders , Stiffness , Rubber , Potential energy , Stress , Eigenfunctions AND Compression ,
    • Download: (647.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The End Problem of Incompressible Elastic Cylinders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/113170
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorYun Ling
    contributor authorP. A. Engel
    contributor authorJ. A. Geer
    date accessioned2017-05-08T23:43:27Z
    date available2017-05-08T23:43:27Z
    date copyrightMarch, 1994
    date issued1994
    identifier issn0021-8936
    identifier otherJAMCAV-26355#30_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/113170
    description abstractThe end problem of incompressible elastic cylinders is formulated and is solved by an eigenfunction expansion method. Various methods for the determination of the unknown coefficients of the expansion are studied and a variational approach which minimizes the total potential energy is suggested. A transformation is introduced for a better calculation of the stiffness of a cylinder. The Benthem and Minderhoud (1972) expansion is used to describe the interfacial stress distributions. The difficulties of using this expansion for thin cylinders are overcome by utilizing the Cesaro sum (Powell and Shah, 1972). Numerical results for the compression of bonded rubber cylinders are presented and discussed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe End Problem of Incompressible Elastic Cylinders
    typeJournal Paper
    journal volume61
    journal issue1
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2901417
    journal fristpage30
    journal lastpage37
    identifier eissn1528-9036
    keywordsCylinders
    keywordsStiffness
    keywordsRubber
    keywordsPotential energy
    keywordsStress
    keywordsEigenfunctions AND Compression
    treeJournal of Applied Mechanics:;1994:;volume( 061 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian