YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Stability of the Damped Hill’s Equation With Arbitrary, Bounded Parametric Excitation

    Source: Journal of Applied Mechanics:;1993:;volume( 060 ):;issue: 002::page 366
    Author:
    C. D. Rahn
    ,
    C. D. Mote
    DOI: 10.1115/1.2900802
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The minimum damping for asymptotic stability is predicted for Hill’s equation with any bounded parametric excitation. It is shown that the response of Hill’s equation with bounded parametric excitation is exponentially bounded. The parametric excitation maximizing the bounding exponent is identified by time optimal control theory. This maximal bounding exponent is balanced by viscous damping to ensure asymptotic stability. The minimum damping ratio is calculated as a function of the excitation bound. A closed form, more conservative estimate of the minimum damping ratio is also predicted. Thus, if the general (e.g., unknown, aperiodic, or random) parametric excitation of Hill’s equation is bounded, a simple, conservative estimate of the damping required for asymptotic stability is given in this paper.
    keyword(s): Stability , Equations , Damping AND Time optimal control ,
    • Download: (461.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Stability of the Damped Hill’s Equation With Arbitrary, Bounded Parametric Excitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/111439
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorC. D. Rahn
    contributor authorC. D. Mote
    date accessioned2017-05-08T23:40:30Z
    date available2017-05-08T23:40:30Z
    date copyrightJune, 1993
    date issued1993
    identifier issn0021-8936
    identifier otherJAMCAV-26349#366_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/111439
    description abstractThe minimum damping for asymptotic stability is predicted for Hill’s equation with any bounded parametric excitation. It is shown that the response of Hill’s equation with bounded parametric excitation is exponentially bounded. The parametric excitation maximizing the bounding exponent is identified by time optimal control theory. This maximal bounding exponent is balanced by viscous damping to ensure asymptotic stability. The minimum damping ratio is calculated as a function of the excitation bound. A closed form, more conservative estimate of the minimum damping ratio is also predicted. Thus, if the general (e.g., unknown, aperiodic, or random) parametric excitation of Hill’s equation is bounded, a simple, conservative estimate of the damping required for asymptotic stability is given in this paper.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Stability of the Damped Hill’s Equation With Arbitrary, Bounded Parametric Excitation
    typeJournal Paper
    journal volume60
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2900802
    journal fristpage366
    journal lastpage370
    identifier eissn1528-9036
    keywordsStability
    keywordsEquations
    keywordsDamping AND Time optimal control
    treeJournal of Applied Mechanics:;1993:;volume( 060 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian