YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Dundurs Correspondence Between Cavities and Rigid Inclusions

    Source: Journal of Applied Mechanics:;1993:;volume( 060 ):;issue: 002::page 260
    Author:
    X. Markenscoff
    DOI: 10.1115/1.2900787
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In plane elasticity the solutions of the stress field of rigid inclusion problems yield the solutions of cavity problems loaded by uniform shear tractions σ = 2μ (Ω − ω0 ) |κ = −1 where Ω is the rotation of the inclusion and ω0 the rotation of the material (evaluated at κ = −1, κ being the Kolosov constant). It is proved that if the limit of the stress field for the inclusion problem exists at κ = −1, then it corresponds to a constant rotation field.
    keyword(s): Cavities , Rotation , Stress , Shear (Mechanics) AND Elasticity ,
    • Download: (331.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Dundurs Correspondence Between Cavities and Rigid Inclusions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/111422
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorX. Markenscoff
    date accessioned2017-05-08T23:40:29Z
    date available2017-05-08T23:40:29Z
    date copyrightJune, 1993
    date issued1993
    identifier issn0021-8936
    identifier otherJAMCAV-26349#260_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/111422
    description abstractIn plane elasticity the solutions of the stress field of rigid inclusion problems yield the solutions of cavity problems loaded by uniform shear tractions σ = 2μ (Ω − ω0 ) |κ = −1 where Ω is the rotation of the inclusion and ω0 the rotation of the material (evaluated at κ = −1, κ being the Kolosov constant). It is proved that if the limit of the stress field for the inclusion problem exists at κ = −1, then it corresponds to a constant rotation field.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Dundurs Correspondence Between Cavities and Rigid Inclusions
    typeJournal Paper
    journal volume60
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2900787
    journal fristpage260
    journal lastpage264
    identifier eissn1528-9036
    keywordsCavities
    keywordsRotation
    keywordsStress
    keywordsShear (Mechanics) AND Elasticity
    treeJournal of Applied Mechanics:;1993:;volume( 060 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian