YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On Steady-State Harmonic Vibrations of Nonlinear Systems With Many Degrees of Freedom

    Source: Journal of Applied Mechanics:;1966:;volume( 033 ):;issue: 002::page 406
    Author:
    W. M. Kinney
    ,
    R. M. Rosenberg
    DOI: 10.1115/1.3625057
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A nonlinear spring-mass system with many degrees of freedom, and subjected to periodic exciting forces, is examined. The class of admissible systems and forcing functions is defined, and a geometrical method is described for deducing the steady-state forced vibrations having a period equal to that of the forcing functions. The methods used combine the geometrical methods developed earlier in the problem of normal mode vibrations and Rauscher’s method. The stability of these steady-state forced vibrations is examined by Hsu’s method. The results are applied to an example of a system having two degrees of freedom.
    keyword(s): Degrees of freedom , Nonlinear systems , Vibration , Steady state , Functions , Springs , Force AND Stability ,
    • Download: (2.763Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On Steady-State Harmonic Vibrations of Nonlinear Systems With Many Degrees of Freedom

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/111201
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorW. M. Kinney
    contributor authorR. M. Rosenberg
    date accessioned2017-05-08T23:40:08Z
    date available2017-05-08T23:40:08Z
    date copyrightJune, 1966
    date issued1966
    identifier issn0021-8936
    identifier otherJAMCAV-25826#406_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/111201
    description abstractA nonlinear spring-mass system with many degrees of freedom, and subjected to periodic exciting forces, is examined. The class of admissible systems and forcing functions is defined, and a geometrical method is described for deducing the steady-state forced vibrations having a period equal to that of the forcing functions. The methods used combine the geometrical methods developed earlier in the problem of normal mode vibrations and Rauscher’s method. The stability of these steady-state forced vibrations is examined by Hsu’s method. The results are applied to an example of a system having two degrees of freedom.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn Steady-State Harmonic Vibrations of Nonlinear Systems With Many Degrees of Freedom
    typeJournal Paper
    journal volume33
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3625057
    journal fristpage406
    journal lastpage412
    identifier eissn1528-9036
    keywordsDegrees of freedom
    keywordsNonlinear systems
    keywordsVibration
    keywordsSteady state
    keywordsFunctions
    keywordsSprings
    keywordsForce AND Stability
    treeJournal of Applied Mechanics:;1966:;volume( 033 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian