YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Dynamics of a Conservative Elastic Pendulum

    Source: Journal of Applied Mechanics:;1992:;volume( 059 ):;issue: 002::page 425
    Author:
    Roger F. Gans
    DOI: 10.1115/1.2899537
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a finite element model of the elastica, without dissipation, in a form realizable in the laboratory: a set of rigid links connected by torsion springs. The model is shown to reproduce the linear elastic behavior of beams. The linear beam, and most nonlinear beams are not periodic. (The linear eigenfrequencies are incommensurate.) They do exhibit a basic cyclic behavior, the beam waving back and forth with a measurable period. Extensive exploration of the behavior of a fourlink model reveals windows of periodicity—isolated points in parameter space where the motion is nearly periodic. (The basic phase plane diagrams are asymmetric, and the time evolution of the motion distributes this asymmetry symmetrically in time.) The first such window shows a period twice the basic cycle time, the next, less well observed one, four times the basic cycle time.
    keyword(s): Dynamics (Mechanics) , Pendulums , Cycles , Motion , Energy dissipation , Torsion , Elasticity , Finite element model AND Springs ,
    • Download: (613.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Dynamics of a Conservative Elastic Pendulum

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/109727
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorRoger F. Gans
    date accessioned2017-05-08T23:37:32Z
    date available2017-05-08T23:37:32Z
    date copyrightJune, 1992
    date issued1992
    identifier issn0021-8936
    identifier otherJAMCAV-26340#425_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/109727
    description abstractThis paper presents a finite element model of the elastica, without dissipation, in a form realizable in the laboratory: a set of rigid links connected by torsion springs. The model is shown to reproduce the linear elastic behavior of beams. The linear beam, and most nonlinear beams are not periodic. (The linear eigenfrequencies are incommensurate.) They do exhibit a basic cyclic behavior, the beam waving back and forth with a measurable period. Extensive exploration of the behavior of a fourlink model reveals windows of periodicity—isolated points in parameter space where the motion is nearly periodic. (The basic phase plane diagrams are asymmetric, and the time evolution of the motion distributes this asymmetry symmetrically in time.) The first such window shows a period twice the basic cycle time, the next, less well observed one, four times the basic cycle time.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Dynamics of a Conservative Elastic Pendulum
    typeJournal Paper
    journal volume59
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2899537
    journal fristpage425
    journal lastpage430
    identifier eissn1528-9036
    keywordsDynamics (Mechanics)
    keywordsPendulums
    keywordsCycles
    keywordsMotion
    keywordsEnergy dissipation
    keywordsTorsion
    keywordsElasticity
    keywordsFinite element model AND Springs
    treeJournal of Applied Mechanics:;1992:;volume( 059 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian