YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Porosity on Plane Strain Tensile Crack-Tip Stress Fields in Elastic-Plastic Materials: Part I

    Source: Journal of Applied Mechanics:;1992:;volume( 059 ):;issue: 003::page 559
    Author:
    W. J. Drugan
    ,
    Y. Miao
    DOI: 10.1115/1.2893760
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We perform an analytical first study of the influence of a uniform porosity distribution, for the entire range of porosity level, on the stress field near a plane strain tensile crack tip in ductile material. Such uniform porosity distributions (approximately) arise in incompletely sintered or previously deformed (e.g., during processing) ductile metals and alloys. The elastic-plastic Gurson-Tvergaard constitutive formulation is employed. This model has a sound micromechanical basis, and has been shown to agree well with detailed numerical finite element solutions of, and with experiments on, voided materials. To facilitate closed-form analytical results to the extent possible, we treat nonhardening material with constant, uniform porosity. We show that the assumption of singular plastic strain in the limit as the crack tip is approached renders the governing equations statically determinate with two permissible types of near-tip angular sector: one with constant Cartesian components of stress (“constant stress”); and one with radial stress characteristics (“generalized centered fan”). The former admits an exact asymptotic closed-form stress field representation, and although we prove the latter does not, we derive a highly accurate closed-form approximate representation. We show that complete near-tip solutions can be constructed from these two sector types for the entire range of porosity. These solutions are comprised of three asymptotic sector configurations: (i) “generalized Prandtlfield”for low porosities (0 ≤ f ≤ .02979), similar to the plane strain Prandtl field of fully dense materials, with a fully continuous stress field but sector extents that vary with porosity; (ii) “plane-stress-like field” for intermediate porosities (.02979 < f < .12029), resembling the plane stress solution for fully dense materials, with a ray of radial normal stress discontinuity but sector extents that vary with porosity; (iii) two constant stress sectors for the remaining high porosity range, with a ray of radial normal stress discontinuity and fixed sector extents. Among several interesting features, the solutions show that increasing porosity causes significant modification of the angular variation of stress components, particularly for a range of angles ahead of the crack tip, while also causing a drastic reduction in maximum hydrostatic stress level.
    keyword(s): Stress , Fracture (Materials) , Plane strain , Porosity , Finite element analysis , Equations , Hydrostatics , Metals , Alloys AND Sound ,
    • Download: (884.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Porosity on Plane Strain Tensile Crack-Tip Stress Fields in Elastic-Plastic Materials: Part I

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/109667
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorW. J. Drugan
    contributor authorY. Miao
    date accessioned2017-05-08T23:37:25Z
    date available2017-05-08T23:37:25Z
    date copyrightSeptember, 1992
    date issued1992
    identifier issn0021-8936
    identifier otherJAMCAV-26343#559_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/109667
    description abstractWe perform an analytical first study of the influence of a uniform porosity distribution, for the entire range of porosity level, on the stress field near a plane strain tensile crack tip in ductile material. Such uniform porosity distributions (approximately) arise in incompletely sintered or previously deformed (e.g., during processing) ductile metals and alloys. The elastic-plastic Gurson-Tvergaard constitutive formulation is employed. This model has a sound micromechanical basis, and has been shown to agree well with detailed numerical finite element solutions of, and with experiments on, voided materials. To facilitate closed-form analytical results to the extent possible, we treat nonhardening material with constant, uniform porosity. We show that the assumption of singular plastic strain in the limit as the crack tip is approached renders the governing equations statically determinate with two permissible types of near-tip angular sector: one with constant Cartesian components of stress (“constant stress”); and one with radial stress characteristics (“generalized centered fan”). The former admits an exact asymptotic closed-form stress field representation, and although we prove the latter does not, we derive a highly accurate closed-form approximate representation. We show that complete near-tip solutions can be constructed from these two sector types for the entire range of porosity. These solutions are comprised of three asymptotic sector configurations: (i) “generalized Prandtlfield”for low porosities (0 ≤ f ≤ .02979), similar to the plane strain Prandtl field of fully dense materials, with a fully continuous stress field but sector extents that vary with porosity; (ii) “plane-stress-like field” for intermediate porosities (.02979 < f < .12029), resembling the plane stress solution for fully dense materials, with a ray of radial normal stress discontinuity but sector extents that vary with porosity; (iii) two constant stress sectors for the remaining high porosity range, with a ray of radial normal stress discontinuity and fixed sector extents. Among several interesting features, the solutions show that increasing porosity causes significant modification of the angular variation of stress components, particularly for a range of angles ahead of the crack tip, while also causing a drastic reduction in maximum hydrostatic stress level.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of Porosity on Plane Strain Tensile Crack-Tip Stress Fields in Elastic-Plastic Materials: Part I
    typeJournal Paper
    journal volume59
    journal issue3
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2893760
    journal fristpage559
    journal lastpage567
    identifier eissn1528-9036
    keywordsStress
    keywordsFracture (Materials)
    keywordsPlane strain
    keywordsPorosity
    keywordsFinite element analysis
    keywordsEquations
    keywordsHydrostatics
    keywordsMetals
    keywordsAlloys AND Sound
    treeJournal of Applied Mechanics:;1992:;volume( 059 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian