YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Robustness of Nonlinear Systems Perturbed by External Random Excitation

    Source: Journal of Applied Mechanics:;1992:;volume( 059 ):;issue: 004::page 1015
    Author:
    G. Leng
    ,
    N. Sri Namachchivaya
    ,
    S. Talwar
    DOI: 10.1115/1.2894016
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The effect of external random excitation on nonlinear continuous time systems is examined using the concept of the Lyapunov exponent. The Lyapunov exponent may be regarded as the nonlinear/stochastic analog of the poles of a linear deterministic system. It is shown that while the stationary probability density function of the response undergoes qualitative changes (bifurcations) as system parameters are varied, these bifurcations are not reflected by changes in the sign of the Lyapunov exponent. This finding does not support recent proposals that the Lyapunov exponent be used as a basis for a rigorous theory of stochastic bifurcation.
    keyword(s): Nonlinear systems , Random excitation , Robustness , Bifurcation , Probability , Density AND Poles (Building) ,
    • Download: (644.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Robustness of Nonlinear Systems Perturbed by External Random Excitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/109640
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorG. Leng
    contributor authorN. Sri Namachchivaya
    contributor authorS. Talwar
    date accessioned2017-05-08T23:37:22Z
    date available2017-05-08T23:37:22Z
    date copyrightDecember, 1992
    date issued1992
    identifier issn0021-8936
    identifier otherJAMCAV-26345#1015_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/109640
    description abstractThe effect of external random excitation on nonlinear continuous time systems is examined using the concept of the Lyapunov exponent. The Lyapunov exponent may be regarded as the nonlinear/stochastic analog of the poles of a linear deterministic system. It is shown that while the stationary probability density function of the response undergoes qualitative changes (bifurcations) as system parameters are varied, these bifurcations are not reflected by changes in the sign of the Lyapunov exponent. This finding does not support recent proposals that the Lyapunov exponent be used as a basis for a rigorous theory of stochastic bifurcation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRobustness of Nonlinear Systems Perturbed by External Random Excitation
    typeJournal Paper
    journal volume59
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2894016
    journal fristpage1015
    journal lastpage1022
    identifier eissn1528-9036
    keywordsNonlinear systems
    keywordsRandom excitation
    keywordsRobustness
    keywordsBifurcation
    keywordsProbability
    keywordsDensity AND Poles (Building)
    treeJournal of Applied Mechanics:;1992:;volume( 059 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian