YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Unified Spherical Curvature Theory of Point-, Plane-, and Circle-Paths

    Source: Journal of Mechanical Design:;1991:;volume( 113 ):;issue: 002::page 142
    Author:
    Kwun-Lon Ting
    ,
    Ruj Bunduwongse
    DOI: 10.1115/1.2912762
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a unified treatment on the spherical curvature theory of point-, plane-, and circle-, paths or direct and inverse kinematics. It features the use of spherical inverse Euler-Savary equation to identify the kinematic loci such as return cone, double cusp axes, center-axis cone, and Burmester center axes. These results are then applied to the curvature theory of plane-path or circle-path to identify return plane, center plane, Ball’s plane, and Burmester plane. It explains satisfactorily the duality between point- and plant-paths.
    keyword(s): Kinematics , Equations AND Industrial plants ,
    • Download: (705.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Unified Spherical Curvature Theory of Point-, Plane-, and Circle-Paths

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/108927
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorKwun-Lon Ting
    contributor authorRuj Bunduwongse
    date accessioned2017-05-08T23:36:08Z
    date available2017-05-08T23:36:08Z
    date copyrightJune, 1991
    date issued1991
    identifier issn1050-0472
    identifier otherJMDEDB-27588#142_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/108927
    description abstractThis paper presents a unified treatment on the spherical curvature theory of point-, plane-, and circle-, paths or direct and inverse kinematics. It features the use of spherical inverse Euler-Savary equation to identify the kinematic loci such as return cone, double cusp axes, center-axis cone, and Burmester center axes. These results are then applied to the curvature theory of plane-path or circle-path to identify return plane, center plane, Ball’s plane, and Burmester plane. It explains satisfactorily the duality between point- and plant-paths.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUnified Spherical Curvature Theory of Point-, Plane-, and Circle-Paths
    typeJournal Paper
    journal volume113
    journal issue2
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.2912762
    journal fristpage142
    journal lastpage149
    identifier eissn1528-9001
    keywordsKinematics
    keywordsEquations AND Industrial plants
    treeJournal of Mechanical Design:;1991:;volume( 113 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian