Show simple item record

contributor authorKwun-Lon Ting
contributor authorRuj Bunduwongse
date accessioned2017-05-08T23:36:08Z
date available2017-05-08T23:36:08Z
date copyrightJune, 1991
date issued1991
identifier issn1050-0472
identifier otherJMDEDB-27588#142_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/108927
description abstractThis paper presents a unified treatment on the spherical curvature theory of point-, plane-, and circle-, paths or direct and inverse kinematics. It features the use of spherical inverse Euler-Savary equation to identify the kinematic loci such as return cone, double cusp axes, center-axis cone, and Burmester center axes. These results are then applied to the curvature theory of plane-path or circle-path to identify return plane, center plane, Ball’s plane, and Burmester plane. It explains satisfactorily the duality between point- and plant-paths.
publisherThe American Society of Mechanical Engineers (ASME)
titleUnified Spherical Curvature Theory of Point-, Plane-, and Circle-Paths
typeJournal Paper
journal volume113
journal issue2
journal titleJournal of Mechanical Design
identifier doi10.1115/1.2912762
journal fristpage142
journal lastpage149
identifier eissn1528-9001
keywordsKinematics
keywordsEquations AND Industrial plants
treeJournal of Mechanical Design:;1991:;volume( 113 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record