YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Maximum Entropy Approach for Stationary Response of Nonlinear Stochastic Oscillators

    Source: Journal of Applied Mechanics:;1991:;volume( 058 ):;issue: 001::page 266
    Author:
    R. J. Chang
    DOI: 10.1115/1.2897162
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A new approach based on the maximum entropy method is developed for deriving the stationary probability density function of a stable nonlinear stochastic system. The technique is implemented by employing the density function with undetermined parameters from the entropy method and solving a set of algebraic moment equations from a nonlinear stochastic system for the unknown parameters. For a wide class of stochastic systems with given density functions, an explicit density function of the stochastic system perturbed by a nonlinear function of states and noises can be obtained. Three nonlinear oscillators are selected for illustrating the present scheme and the validity of the derived density functions is further supported by some exact solutions and Monte Carlo simulations.
    keyword(s): Entropy , Density , Stochastic systems , Functions , Probability , Noise (Sound) , Engineering simulation AND Equations ,
    • Download: (498.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Maximum Entropy Approach for Stationary Response of Nonlinear Stochastic Oscillators

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/108118
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorR. J. Chang
    date accessioned2017-05-08T23:34:46Z
    date available2017-05-08T23:34:46Z
    date copyrightMarch, 1991
    date issued1991
    identifier issn0021-8936
    identifier otherJAMCAV-26330#266_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/108118
    description abstractA new approach based on the maximum entropy method is developed for deriving the stationary probability density function of a stable nonlinear stochastic system. The technique is implemented by employing the density function with undetermined parameters from the entropy method and solving a set of algebraic moment equations from a nonlinear stochastic system for the unknown parameters. For a wide class of stochastic systems with given density functions, an explicit density function of the stochastic system perturbed by a nonlinear function of states and noises can be obtained. Three nonlinear oscillators are selected for illustrating the present scheme and the validity of the derived density functions is further supported by some exact solutions and Monte Carlo simulations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMaximum Entropy Approach for Stationary Response of Nonlinear Stochastic Oscillators
    typeJournal Paper
    journal volume58
    journal issue1
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2897162
    journal fristpage266
    journal lastpage271
    identifier eissn1528-9036
    keywordsEntropy
    keywordsDensity
    keywordsStochastic systems
    keywordsFunctions
    keywordsProbability
    keywordsNoise (Sound)
    keywordsEngineering simulation AND Equations
    treeJournal of Applied Mechanics:;1991:;volume( 058 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian