YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Response of Infinitely Long Circular Cylindrical Shells to Subharmonic Radial Loads

    Source: Journal of Applied Mechanics:;1991:;volume( 058 ):;issue: 004::page 1033
    Author:
    Ali H. Nayfeh
    ,
    Raouf A. Raouf
    ,
    Jamal F. Nayfeh
    DOI: 10.1115/1.2897679
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The method of multiple scales is used to analyze the nonlinear response of infinitely long, circular cylindrical shells (thin circular rings) in the presence of a two-to-one internal (autoparametric) resonance to a subharmonic excitation of order one-half of the higher mode. Four autonomous first-order ordinary differential equations are derived for the modulation of the amplitudes and phases of the interacting modes. These modulation equations are used to determine the fixed points and their stability. The fixed points correspond to periodic oscillations of the shell, whereas the limit-cycle solutions of the modulation equations correspond to amplitude and phase-modulated oscillations of the shell. The force response curves exhibit saturation, jumps, and Hopf bifurcations. Moreover, the frequency response curves exhibit Hopf bifurcations. For certain parameters and excitation frequencies between the Hopf values, limit-cycle solutions of the modulation equations are found. As the excitation frequency changes, all limit cycles deform and lose stability through either pitchfork or cyclic-fold (saddle-node) bifurcations. Some of these saddlenode bifurcations cause a transition to chaos. The pitchfork bifurcations break the symmetry of the limit cycles.
    keyword(s): Stress , Circular cylindrical shells , Bifurcation , Cycles , Equations , Oscillations , Stability , Shells , Chaos , Resonance , Force , Differential equations , Frequency AND Frequency response ,
    • Download: (794.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Response of Infinitely Long Circular Cylindrical Shells to Subharmonic Radial Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/107950
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorAli H. Nayfeh
    contributor authorRaouf A. Raouf
    contributor authorJamal F. Nayfeh
    date accessioned2017-05-08T23:34:29Z
    date available2017-05-08T23:34:29Z
    date copyrightDecember, 1991
    date issued1991
    identifier issn0021-8936
    identifier otherJAMCAV-26335#1033_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/107950
    description abstractThe method of multiple scales is used to analyze the nonlinear response of infinitely long, circular cylindrical shells (thin circular rings) in the presence of a two-to-one internal (autoparametric) resonance to a subharmonic excitation of order one-half of the higher mode. Four autonomous first-order ordinary differential equations are derived for the modulation of the amplitudes and phases of the interacting modes. These modulation equations are used to determine the fixed points and their stability. The fixed points correspond to periodic oscillations of the shell, whereas the limit-cycle solutions of the modulation equations correspond to amplitude and phase-modulated oscillations of the shell. The force response curves exhibit saturation, jumps, and Hopf bifurcations. Moreover, the frequency response curves exhibit Hopf bifurcations. For certain parameters and excitation frequencies between the Hopf values, limit-cycle solutions of the modulation equations are found. As the excitation frequency changes, all limit cycles deform and lose stability through either pitchfork or cyclic-fold (saddle-node) bifurcations. Some of these saddlenode bifurcations cause a transition to chaos. The pitchfork bifurcations break the symmetry of the limit cycles.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNonlinear Response of Infinitely Long Circular Cylindrical Shells to Subharmonic Radial Loads
    typeJournal Paper
    journal volume58
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.2897679
    journal fristpage1033
    journal lastpage1041
    identifier eissn1528-9036
    keywordsStress
    keywordsCircular cylindrical shells
    keywordsBifurcation
    keywordsCycles
    keywordsEquations
    keywordsOscillations
    keywordsStability
    keywordsShells
    keywordsChaos
    keywordsResonance
    keywordsForce
    keywordsDifferential equations
    keywordsFrequency AND Frequency response
    treeJournal of Applied Mechanics:;1991:;volume( 058 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian