YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Stability Behavor of Bifurcated Normal Modes in Coupled Nonlinear Systems

    Source: Journal of Applied Mechanics:;1989:;volume( 056 ):;issue: 001::page 155
    Author:
    C. H. Pak
    DOI: 10.1115/1.3176037
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The stability of bifurcated normal modes in coupled nonlinear oscillators is investigated, based on Synge’s stability in the kinematico-statical sense, utilizing the calculus of variations and Floquet’s theory. It is found, in general, that in a generic bifurcation, the stabilities of two bifurcated modes are opposite, and in a nongeneric bifurcation, the stability of continuing modes is opposite to that of the existing mode, and the stabilities of the two bifurcated modes are equal but opposite to that of the continuing mode. Some examples are illustrated.
    keyword(s): Stability , Nonlinear systems AND Bifurcation ,
    • Download: (625.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Stability Behavor of Bifurcated Normal Modes in Coupled Nonlinear Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/105018
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorC. H. Pak
    date accessioned2017-05-08T23:29:17Z
    date available2017-05-08T23:29:17Z
    date copyrightMarch, 1989
    date issued1989
    identifier issn0021-8936
    identifier otherJAMCAV-26303#155_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/105018
    description abstractThe stability of bifurcated normal modes in coupled nonlinear oscillators is investigated, based on Synge’s stability in the kinematico-statical sense, utilizing the calculus of variations and Floquet’s theory. It is found, in general, that in a generic bifurcation, the stabilities of two bifurcated modes are opposite, and in a nongeneric bifurcation, the stability of continuing modes is opposite to that of the existing mode, and the stabilities of the two bifurcated modes are equal but opposite to that of the continuing mode. Some examples are illustrated.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Stability Behavor of Bifurcated Normal Modes in Coupled Nonlinear Systems
    typeJournal Paper
    journal volume56
    journal issue1
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3176037
    journal fristpage155
    journal lastpage161
    identifier eissn1528-9036
    keywordsStability
    keywordsNonlinear systems AND Bifurcation
    treeJournal of Applied Mechanics:;1989:;volume( 056 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian