YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Second-Order Accurate Explicit Finite-Difference Schemes for Waterhammer Analysis

    Source: Journal of Fluids Engineering:;1985:;volume( 107 ):;issue: 004::page 523
    Author:
    M. H. Chaudhry
    ,
    M. Y. Hussaini
    DOI: 10.1115/1.3242524
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Three second-order accurate explicit finite-difference schemes—MacCormack’s method, Lambda scheme and Gabutti scheme—are introduced to solve the quasilinear, hyperbolic partial differential equations describing waterhammer phenomenon in closed conduits. The details of these schemes and the treatment of boundary conditions are presented. The results computed by using these schemes for a simple frictionless piping system are compared with the exact solution. It is shown that for the same accuracy, second-order schemes require fewer computational nodes and less computer time as compared to those required by the first-order characteristic method.
    keyword(s): Computers , Boundary-value problems , Partial differential equations AND Piping systems ,
    • Download: (545.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Second-Order Accurate Explicit Finite-Difference Schemes for Waterhammer Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/99991
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorM. H. Chaudhry
    contributor authorM. Y. Hussaini
    date accessioned2017-05-08T23:20:31Z
    date available2017-05-08T23:20:31Z
    date copyrightDecember, 1985
    date issued1985
    identifier issn0098-2202
    identifier otherJFEGA4-27016#523_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/99991
    description abstractThree second-order accurate explicit finite-difference schemes—MacCormack’s method, Lambda scheme and Gabutti scheme—are introduced to solve the quasilinear, hyperbolic partial differential equations describing waterhammer phenomenon in closed conduits. The details of these schemes and the treatment of boundary conditions are presented. The results computed by using these schemes for a simple frictionless piping system are compared with the exact solution. It is shown that for the same accuracy, second-order schemes require fewer computational nodes and less computer time as compared to those required by the first-order characteristic method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSecond-Order Accurate Explicit Finite-Difference Schemes for Waterhammer Analysis
    typeJournal Paper
    journal volume107
    journal issue4
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.3242524
    journal fristpage523
    journal lastpage529
    identifier eissn1528-901X
    keywordsComputers
    keywordsBoundary-value problems
    keywordsPartial differential equations AND Piping systems
    treeJournal of Fluids Engineering:;1985:;volume( 107 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian