YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimal Discretization of Power Stress-Strain Law Curves

    Source: Journal of Engineering Materials and Technology:;1985:;volume( 107 ):;issue: 002::page 115
    Author:
    R. Hoff
    ,
    L. M. Santi
    ,
    G. E. Johnson
    ,
    C. A. Rubin
    ,
    G. T. Hahn
    DOI: 10.1115/1.3225785
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A criterion for optimal discretization of power stress-strain law curves is proposed. The criterion is based on the assumption that it is desirable to have the fewest possible line segments without exceeding some predetermined bound on the error. The formulation produces a system of simultaneous nonlinear equations which are solved using an iterative search technique. Solutions are presented in both graphical and tabular form for a wide range of strain hardening exponents and acceptable error bounds. It is shown that stress and energy density can be accurately and efficiently modeled using the optimal discretization.
    keyword(s): Stress , Errors , Nonlinear equations , Work hardening AND Density ,
    • Download: (309.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimal Discretization of Power Stress-Strain Law Curves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/99942
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorR. Hoff
    contributor authorL. M. Santi
    contributor authorG. E. Johnson
    contributor authorC. A. Rubin
    contributor authorG. T. Hahn
    date accessioned2017-05-08T23:20:25Z
    date available2017-05-08T23:20:25Z
    date copyrightApril, 1985
    date issued1985
    identifier issn0094-4289
    identifier otherJEMTA8-26903#115_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/99942
    description abstractA criterion for optimal discretization of power stress-strain law curves is proposed. The criterion is based on the assumption that it is desirable to have the fewest possible line segments without exceeding some predetermined bound on the error. The formulation produces a system of simultaneous nonlinear equations which are solved using an iterative search technique. Solutions are presented in both graphical and tabular form for a wide range of strain hardening exponents and acceptable error bounds. It is shown that stress and energy density can be accurately and efficiently modeled using the optimal discretization.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimal Discretization of Power Stress-Strain Law Curves
    typeJournal Paper
    journal volume107
    journal issue2
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.3225785
    journal fristpage115
    journal lastpage118
    identifier eissn1528-8889
    keywordsStress
    keywordsErrors
    keywordsNonlinear equations
    keywordsWork hardening AND Density
    treeJournal of Engineering Materials and Technology:;1985:;volume( 107 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian