Epicardial Coronary Blood Flow Including the Presence of Stenoses and Aorto-Coronary Bypasses—I: Model and Numerical MethodSource: Journal of Biomechanical Engineering:;1985:;volume( 107 ):;issue: 004::page 361DOI: 10.1115/1.3138570Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: A computer model and numerical method for calculating left epicardial coronary blood flow has been developed. This model employs a finite-branching geometry of the coronary vasculature and the one-dimensional, unsteady equations for flow with friction. The epicardial coronary geometry includes the left main and its bifurcation, the left anterior descending and left circumflex coronary arteries, and a selected number of small branches. Each of the latter terminate in an impedance, whose resistive component is related to intramyocardial compression through a linear dependence on left ventricular pressure. The elastic properties of the epicardial arteries are taken to be non-linear and are prescribed by specifying the local small-disturbance wave speed. The model allows for the incorporation of multiple stenoses as well as aorto-coronary bypasses. Calculations using this model predict pressure and flow waveform development and allow for the systematic investigation of the dependence of coronary flow on various parameters, e.g., peripheral resistance, wall properties, and branching pattern, as well as the presence of stenoses and bypass grafts. Reasonable comparison between calculations and earlier experiments in horses has been obtained.
keyword(s): Numerical analysis , Blood flow , Bifurcation , Flow (Dynamics) , Pressure , Geometry , Coronary arteries , Elasticity , Friction , Electrical resistance , Impedance (Electricity) , Waves , Compression , Equations AND Computers ,
|
Collections
Show full item record
contributor author | E. Rooz | |
contributor author | T. F. Wiesner | |
contributor author | R. M. Nerem | |
date accessioned | 2017-05-08T23:19:41Z | |
date available | 2017-05-08T23:19:41Z | |
date copyright | November, 1985 | |
date issued | 1985 | |
identifier issn | 0148-0731 | |
identifier other | JBENDY-25807#361_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/99508 | |
description abstract | A computer model and numerical method for calculating left epicardial coronary blood flow has been developed. This model employs a finite-branching geometry of the coronary vasculature and the one-dimensional, unsteady equations for flow with friction. The epicardial coronary geometry includes the left main and its bifurcation, the left anterior descending and left circumflex coronary arteries, and a selected number of small branches. Each of the latter terminate in an impedance, whose resistive component is related to intramyocardial compression through a linear dependence on left ventricular pressure. The elastic properties of the epicardial arteries are taken to be non-linear and are prescribed by specifying the local small-disturbance wave speed. The model allows for the incorporation of multiple stenoses as well as aorto-coronary bypasses. Calculations using this model predict pressure and flow waveform development and allow for the systematic investigation of the dependence of coronary flow on various parameters, e.g., peripheral resistance, wall properties, and branching pattern, as well as the presence of stenoses and bypass grafts. Reasonable comparison between calculations and earlier experiments in horses has been obtained. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Epicardial Coronary Blood Flow Including the Presence of Stenoses and Aorto-Coronary Bypasses—I: Model and Numerical Method | |
type | Journal Paper | |
journal volume | 107 | |
journal issue | 4 | |
journal title | Journal of Biomechanical Engineering | |
identifier doi | 10.1115/1.3138570 | |
journal fristpage | 361 | |
journal lastpage | 367 | |
identifier eissn | 1528-8951 | |
keywords | Numerical analysis | |
keywords | Blood flow | |
keywords | Bifurcation | |
keywords | Flow (Dynamics) | |
keywords | Pressure | |
keywords | Geometry | |
keywords | Coronary arteries | |
keywords | Elasticity | |
keywords | Friction | |
keywords | Electrical resistance | |
keywords | Impedance (Electricity) | |
keywords | Waves | |
keywords | Compression | |
keywords | Equations AND Computers | |
tree | Journal of Biomechanical Engineering:;1985:;volume( 107 ):;issue: 004 | |
contenttype | Fulltext |