YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering Materials and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Self-Consistent Analysis of the Stiffening Effect of Rigid Inclusions on a Power-Law Material

    Source: Journal of Engineering Materials and Technology:;1984:;volume( 106 ):;issue: 004::page 317
    Author:
    J. M. Duva
    DOI: 10.1115/1.3225723
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An approximate constitutive relation is derived for a power-law viscous material stiffened by rigid spherical inclusions using a differential self-consistent analysis. This approach consists of two parts: the formulation of a self-consistent differential equation, and the solution of an associated kernel problem, a nonlinear boundary value problem for an isolated inclusion in an infinite power-law viscous matrix.
    keyword(s): Differential equations AND Boundary-value problems ,
    • Download: (444.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Self-Consistent Analysis of the Stiffening Effect of Rigid Inclusions on a Power-Law Material

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/98511
    Collections
    • Journal of Engineering Materials and Technology

    Show full item record

    contributor authorJ. M. Duva
    date accessioned2017-05-08T23:18:01Z
    date available2017-05-08T23:18:01Z
    date copyrightOctober, 1984
    date issued1984
    identifier issn0094-4289
    identifier otherJEMTA8-26900#317_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/98511
    description abstractAn approximate constitutive relation is derived for a power-law viscous material stiffened by rigid spherical inclusions using a differential self-consistent analysis. This approach consists of two parts: the formulation of a self-consistent differential equation, and the solution of an associated kernel problem, a nonlinear boundary value problem for an isolated inclusion in an infinite power-law viscous matrix.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Self-Consistent Analysis of the Stiffening Effect of Rigid Inclusions on a Power-Law Material
    typeJournal Paper
    journal volume106
    journal issue4
    journal titleJournal of Engineering Materials and Technology
    identifier doi10.1115/1.3225723
    journal fristpage317
    journal lastpage321
    identifier eissn1528-8889
    keywordsDifferential equations AND Boundary-value problems
    treeJournal of Engineering Materials and Technology:;1984:;volume( 106 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian