YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Approach to the Stability of Rotor-Bearing Systems

    Source: Journal of Mechanical Design:;1982:;volume( 104 ):;issue: 002::page 356
    Author:
    K. Athre
    ,
    J. Kurian
    ,
    K. N. Gupta
    ,
    R. D. Garg
    DOI: 10.1115/1.3256351
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The stability characteristics of a rotor-bearing system which indicate the threshold of instability are generally obtained by applying the Routh-Hurwitz criterion to the characteristic polynomial. Usually the characteristic polynomial is obtained analytically from the characteristic determinant. In the case of the generalized eigenvalue problems, this is practically impossible. To study the stability characteristics of a floating bush bearing, the characteristic polynomial is constructed from the generalized eigenvalue problem using a recently developed numerical technique. Results obtained through this computer package are compared with those already available in the literature.
    keyword(s): Stability , Bearings , Rotors , Polynomials , Eigenvalues AND Computers ,
    • Download: (548.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Approach to the Stability of Rotor-Bearing Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/96208
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorK. Athre
    contributor authorJ. Kurian
    contributor authorK. N. Gupta
    contributor authorR. D. Garg
    date accessioned2017-05-08T23:14:01Z
    date available2017-05-08T23:14:01Z
    date copyrightApril, 1982
    date issued1982
    identifier issn1050-0472
    identifier otherJMDEDB-27998#356_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/96208
    description abstractThe stability characteristics of a rotor-bearing system which indicate the threshold of instability are generally obtained by applying the Routh-Hurwitz criterion to the characteristic polynomial. Usually the characteristic polynomial is obtained analytically from the characteristic determinant. In the case of the generalized eigenvalue problems, this is practically impossible. To study the stability characteristics of a floating bush bearing, the characteristic polynomial is constructed from the generalized eigenvalue problem using a recently developed numerical technique. Results obtained through this computer package are compared with those already available in the literature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Numerical Approach to the Stability of Rotor-Bearing Systems
    typeJournal Paper
    journal volume104
    journal issue2
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.3256351
    journal fristpage356
    journal lastpage363
    identifier eissn1528-9001
    keywordsStability
    keywordsBearings
    keywordsRotors
    keywordsPolynomials
    keywordsEigenvalues AND Computers
    treeJournal of Mechanical Design:;1982:;volume( 104 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian