contributor author | J. A. Tárrago | |
contributor author | C. Bastero | |
contributor author | J. García de Jalón | |
contributor author | M. A. Serna | |
date accessioned | 2017-05-08T23:13:56Z | |
date available | 2017-05-08T23:13:56Z | |
date copyright | October, 1982 | |
date issued | 1982 | |
identifier issn | 1050-0472 | |
identifier other | JMDEDB-28003#869_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/96151 | |
description abstract | In this paper, a new method for the numerical solution of the finite displacement problem in spatial mechanisms with revolute (R), cylindrical (C), spherical (S), and prismatic (P) pairs is presented. It is based on the use of special points’ coordinates as Lagrangian coordinates of the mechanism. The kinematic constraint equations are imposed as constant distances, areas, and volumes of segments, triangles, and tetrahedrons determined by those points. The system of nonlinear equations is solved via the Gauss-Newton variation of the Least Squares Method. Finally, three examples are presented in which the good convergence properties of the method can be seen. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | A Computer Method for the Finite Displacement Problem in Spatial Mechanisms | |
type | Journal Paper | |
journal volume | 104 | |
journal issue | 4 | |
journal title | Journal of Mechanical Design | |
identifier doi | 10.1115/1.3256450 | |
journal fristpage | 869 | |
journal lastpage | 874 | |
identifier eissn | 1528-9001 | |
keywords | Computers | |
keywords | Displacement | |
keywords | Mechanisms | |
keywords | Equations AND Nonlinear equations | |
tree | Journal of Mechanical Design:;1982:;volume( 104 ):;issue: 004 | |
contenttype | Fulltext | |