YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of Euler Parameters to the Dynamic Analysis of Three-Dimensional Constrained Mechanical Systems

    Source: Journal of Mechanical Design:;1982:;volume( 104 ):;issue: 004::page 785
    Author:
    P. E. Nikravesh
    ,
    I. S. Chung
    DOI: 10.1115/1.3256437
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a computer-based method for formulation and efficient solution of nonlinear, constrained differential equations of motion for spatial dynamic analysis of mechanical systems. Nonlinear holonomic constraint equations and differential equations of motion are written in terms of a maximal set of Cartesian generalized coordinates, three translational and four rotational coordinates for each rigid body in the system, where the rotational coordinates are the Euler parameters. Euler parameters, in contrast to Euler angles or any other set of three rotational generalized coordinates, have no critical singular cases. The maximal set of generalized coordinates facilitates the general formulation of constraints and forcing functions. A Gaussian elimination algorithm with full pivoting decomposes the constraint Jacobian matrix, identifies dependent variables, and constructs an influence coefficient matrix relating variations in dependent and indpendent variables. This information is employed to numerically construct a reduced system of differential equations of motion whose solution yields the total system dynamic response. A numerical integration algorithm with positive-error control, employing a predictor-corrector algorithm with variable order and step size, integrates for only the independent variables, yet effectively determines dependent variables.
    keyword(s): Dynamic analysis , Motion , Algorithms , Differential equations , System dynamics , Computers , Equations , Errors , Functions AND Jacobian matrices ,
    • Download: (649.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of Euler Parameters to the Dynamic Analysis of Three-Dimensional Constrained Mechanical Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/96137
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorP. E. Nikravesh
    contributor authorI. S. Chung
    date accessioned2017-05-08T23:13:55Z
    date available2017-05-08T23:13:55Z
    date copyrightOctober, 1982
    date issued1982
    identifier issn1050-0472
    identifier otherJMDEDB-28003#785_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/96137
    description abstractThis paper presents a computer-based method for formulation and efficient solution of nonlinear, constrained differential equations of motion for spatial dynamic analysis of mechanical systems. Nonlinear holonomic constraint equations and differential equations of motion are written in terms of a maximal set of Cartesian generalized coordinates, three translational and four rotational coordinates for each rigid body in the system, where the rotational coordinates are the Euler parameters. Euler parameters, in contrast to Euler angles or any other set of three rotational generalized coordinates, have no critical singular cases. The maximal set of generalized coordinates facilitates the general formulation of constraints and forcing functions. A Gaussian elimination algorithm with full pivoting decomposes the constraint Jacobian matrix, identifies dependent variables, and constructs an influence coefficient matrix relating variations in dependent and indpendent variables. This information is employed to numerically construct a reduced system of differential equations of motion whose solution yields the total system dynamic response. A numerical integration algorithm with positive-error control, employing a predictor-corrector algorithm with variable order and step size, integrates for only the independent variables, yet effectively determines dependent variables.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleApplication of Euler Parameters to the Dynamic Analysis of Three-Dimensional Constrained Mechanical Systems
    typeJournal Paper
    journal volume104
    journal issue4
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.3256437
    journal fristpage785
    journal lastpage791
    identifier eissn1528-9001
    keywordsDynamic analysis
    keywordsMotion
    keywordsAlgorithms
    keywordsDifferential equations
    keywordsSystem dynamics
    keywordsComputers
    keywordsEquations
    keywordsErrors
    keywordsFunctions AND Jacobian matrices
    treeJournal of Mechanical Design:;1982:;volume( 104 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian