Show simple item record

contributor authorJ. J. Kauzlarich
contributor authorA. B. Cambel
date accessioned2017-05-08T23:08:59Z
date available2017-05-08T23:08:59Z
date copyrightJune, 1963
date issued1963
identifier issn0021-8936
identifier otherJAMCAV-25708#269_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/93434
description abstractThe drag of an adiabatic flat plate in an ionized gas for a constant magnetic field applied to the boundary layer on the plate is found by a momentum integral approximation of von Karman. Laminar, two-dimensional flow, zero pressure gradient, small magnetic Reynolds number, and negligible electrical conductivity outside the boundary layer are assumed. The solution is valid in particular to a continuous, perfect-gas plasma, of unitary Prandtl number, and for conditions when the interaction parameter is very small. The solution shows the following effects: The adiabatic wall temperature is independent of the magnetic field; there is an increase in the boundary-layer thickness as the magnetic-field strength is increased; and the viscous drag coefficient decreases whereas the coefficient of total drag increases.
publisherThe American Society of Mechanical Engineers (ASME)
titleThe Momentum Integral Approximation for Compressible Magnetogasdynamic Boundary-Layer Flow
typeJournal Paper
journal volume30
journal issue2
journal titleJournal of Applied Mechanics
identifier doi10.1115/1.3636523
journal fristpage269
journal lastpage274
identifier eissn1528-9036
keywordsFlow (Dynamics)
keywordsBoundary layers
keywordsApproximation
keywordsMomentum
keywordsMagnetic fields
keywordsDrag (Fluid dynamics)
keywordsReynolds number
keywordsPlasmas (Ionized gases)
keywordsFlat plates
keywordsPrandtl number
keywordsPressure gradient
keywordsThickness
keywordsWall temperature AND Electrical conductivity
treeJournal of Applied Mechanics:;1963:;volume( 030 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record