YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Stolz and ASME-AGA Orifice Equations Compared to Laboratory Data

    Source: Journal of Fluids Engineering:;1979:;volume( 101 ):;issue: 004::page 483
    Author:
    R. W. Miller
    DOI: 10.1115/1.3449015
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Today, technical experts in Europe and the U.S. are debating the merits of conducting new orifice flowmeter tests, establishing the effects of upstream disturbance and conducting other programs to improve orifice flowmetering accuracy. ISO has adopted a new “Universal” orifice equation proposed by J. Stolz. With over 1,000,000 orifice flowmeters in use today, any change in the coefficient value is of major concern. There are now two equations for calculating flange tap coefficients, the ASME-AGA equation and the ISO equation. They differ in form, predict different coefficients, and have different overall uncertainties (tolerance value). This paper presents a comparison between actual laboratory data and these two equations. The data were obtained in two high accuracy laboratories on flange tap orifice flowmeters fabricated by different manufacturers to AGA or ASME recommendations. Data plate dimensions were used in all calculations, and conformity to ASME or AGA requirements was the responsibility of the manufacturer. For this reason it is believed that the analysis more nearly represents what the user can expect if the in-site installation approached that of the laboratory. Results indicate that over the same beta ratio range the ISO (or Stolz) equation form is significantly better than the present ASME-AGA form. The overall uncertainty (or tolerance), although smaller than the ASME-AGA, is still ± 1 percent because of a 0.4 percent systematic error. Results of work by Miller-Kneisel, using data from three different laboratories, are presented to indicate that ±0.5 percent remains achievable; for betas up to 0.7 using the ISO (Stolz) equation form with modified coefficients.
    keyword(s): Equations , Flowmeters , Flanges , Dimensions , Errors AND Uncertainty ,
    • Download: (738.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Stolz and ASME-AGA Orifice Equations Compared to Laboratory Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/92265
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorR. W. Miller
    date accessioned2017-05-08T23:06:57Z
    date available2017-05-08T23:06:57Z
    date copyrightDecember, 1979
    date issued1979
    identifier issn0098-2202
    identifier otherJFEGA4-26952#483_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/92265
    description abstractToday, technical experts in Europe and the U.S. are debating the merits of conducting new orifice flowmeter tests, establishing the effects of upstream disturbance and conducting other programs to improve orifice flowmetering accuracy. ISO has adopted a new “Universal” orifice equation proposed by J. Stolz. With over 1,000,000 orifice flowmeters in use today, any change in the coefficient value is of major concern. There are now two equations for calculating flange tap coefficients, the ASME-AGA equation and the ISO equation. They differ in form, predict different coefficients, and have different overall uncertainties (tolerance value). This paper presents a comparison between actual laboratory data and these two equations. The data were obtained in two high accuracy laboratories on flange tap orifice flowmeters fabricated by different manufacturers to AGA or ASME recommendations. Data plate dimensions were used in all calculations, and conformity to ASME or AGA requirements was the responsibility of the manufacturer. For this reason it is believed that the analysis more nearly represents what the user can expect if the in-site installation approached that of the laboratory. Results indicate that over the same beta ratio range the ISO (or Stolz) equation form is significantly better than the present ASME-AGA form. The overall uncertainty (or tolerance), although smaller than the ASME-AGA, is still ± 1 percent because of a 0.4 percent systematic error. Results of work by Miller-Kneisel, using data from three different laboratories, are presented to indicate that ±0.5 percent remains achievable; for betas up to 0.7 using the ISO (Stolz) equation form with modified coefficients.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Stolz and ASME-AGA Orifice Equations Compared to Laboratory Data
    typeJournal Paper
    journal volume101
    journal issue4
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.3449015
    journal fristpage483
    journal lastpage490
    identifier eissn1528-901X
    keywordsEquations
    keywordsFlowmeters
    keywordsFlanges
    keywordsDimensions
    keywordsErrors AND Uncertainty
    treeJournal of Fluids Engineering:;1979:;volume( 101 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian