On the Behavior of Statistical Models Used for DesignSource: Journal of Manufacturing Science and Engineering:;1976:;volume( 098 ):;issue: 002::page 601Author:P. H. Wirsching
DOI: 10.1115/1.3438944Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: In probabilistic design, it is common practice to use two parameter statistical models (e.g., normal, lognormal) to describe random design factors. However, given a random sample of data, it is often difficult to distinguish which of several competing models provides the best description. It is demonstrated herein that the choice of model has a profound effect on probability estimates, particularly in the tails of the distributions. Given only the mean and standard deviation of a random variable, the Tchebycheff or Camp-Meidell inequalities can be used to provide upper-bound estimates of probabilities. However, these inequalities are usually too weak for design purposes. Probability models which yield more reasonable results are proposed. The two parameter exponential and power models are proposed for quasi-upper bounds of right and left tail probabilities, respectively. The exponential and power models are used for stress and strength, respectively, to derive, from inference theory, quasi-upper bounds for probability of failure of a structural element.
keyword(s): Design , Probability , Failure , Structural elements (Construction) AND Stress ,
|
Collections
Show full item record
contributor author | P. H. Wirsching | |
date accessioned | 2017-05-08T23:01:29Z | |
date available | 2017-05-08T23:01:29Z | |
date copyright | May, 1976 | |
date issued | 1976 | |
identifier issn | 1087-1357 | |
identifier other | JMSEFK-27640#601_1.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/89078 | |
description abstract | In probabilistic design, it is common practice to use two parameter statistical models (e.g., normal, lognormal) to describe random design factors. However, given a random sample of data, it is often difficult to distinguish which of several competing models provides the best description. It is demonstrated herein that the choice of model has a profound effect on probability estimates, particularly in the tails of the distributions. Given only the mean and standard deviation of a random variable, the Tchebycheff or Camp-Meidell inequalities can be used to provide upper-bound estimates of probabilities. However, these inequalities are usually too weak for design purposes. Probability models which yield more reasonable results are proposed. The two parameter exponential and power models are proposed for quasi-upper bounds of right and left tail probabilities, respectively. The exponential and power models are used for stress and strength, respectively, to derive, from inference theory, quasi-upper bounds for probability of failure of a structural element. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | On the Behavior of Statistical Models Used for Design | |
type | Journal Paper | |
journal volume | 98 | |
journal issue | 2 | |
journal title | Journal of Manufacturing Science and Engineering | |
identifier doi | 10.1115/1.3438944 | |
journal fristpage | 601 | |
journal lastpage | 606 | |
identifier eissn | 1528-8935 | |
keywords | Design | |
keywords | Probability | |
keywords | Failure | |
keywords | Structural elements (Construction) AND Stress | |
tree | Journal of Manufacturing Science and Engineering:;1976:;volume( 098 ):;issue: 002 | |
contenttype | Fulltext |