YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Simplified Method for Prediction of Loads in Reinforced Soil Walls

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2015:;Volume ( 141 ):;issue: 011
    Author:
    Tony M. Allen
    ,
    Richard J. Bathurst
    DOI: 10.1061/(ASCE)GT.1943-5606.0001355
    Publisher: American Society of Civil Engineers
    Abstract: The Simplified Method as reported in AASHTO and Federal Highway Administration (FHWA) manuals has been demonstrated to give poor predictions of unfactored reinforcement loads and strains, especially for geosynthetic reinforced soil walls. The writers have proposed the K-stiffness Method to improve the load prediction accuracy for walls under working stress (operational) conditions. However, it has also been recognized in recent publications by the writers and others that further improvements to the K-stiffness Method are needed. Furthermore, acceptance of the K-stiffness Method has been hindered due to its perceived complexity and the use of the plane strain friction angle to quantify the strength of the reinforced soil. This paper takes a fresh look at both methods and uses lessons learned from the K-stiffness Method development to improve the accuracy of the AASHTO/FHWA Simplified Method. Key parameters introduced during the development of the K-stiffness Method are applied to the Simplified Method and updated to further improve load prediction accuracy. Additional wall case histories have been added to the database used for the original K-stiffness Method to calibrate the new model and to broaden its utility. An important improvement is a single model that allows for seamless load prediction across a range of walls constructed with relatively extensible geosynthetic reinforcement and inextensible steel reinforcement materials. The quantitative improvement of the new model (Simplified Stiffness Method) compared to the current AASHTO/FHWA Simplified Method is demonstrated through statistical analysis of load bias values (i.e., the ratio of measured to predicted reinforcement load).
    • Download: (3.140Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Simplified Method for Prediction of Loads in Reinforced Soil Walls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/80351
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorTony M. Allen
    contributor authorRichard J. Bathurst
    date accessioned2017-05-08T22:25:23Z
    date available2017-05-08T22:25:23Z
    date copyrightNovember 2015
    date issued2015
    identifier other44399076.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/80351
    description abstractThe Simplified Method as reported in AASHTO and Federal Highway Administration (FHWA) manuals has been demonstrated to give poor predictions of unfactored reinforcement loads and strains, especially for geosynthetic reinforced soil walls. The writers have proposed the K-stiffness Method to improve the load prediction accuracy for walls under working stress (operational) conditions. However, it has also been recognized in recent publications by the writers and others that further improvements to the K-stiffness Method are needed. Furthermore, acceptance of the K-stiffness Method has been hindered due to its perceived complexity and the use of the plane strain friction angle to quantify the strength of the reinforced soil. This paper takes a fresh look at both methods and uses lessons learned from the K-stiffness Method development to improve the accuracy of the AASHTO/FHWA Simplified Method. Key parameters introduced during the development of the K-stiffness Method are applied to the Simplified Method and updated to further improve load prediction accuracy. Additional wall case histories have been added to the database used for the original K-stiffness Method to calibrate the new model and to broaden its utility. An important improvement is a single model that allows for seamless load prediction across a range of walls constructed with relatively extensible geosynthetic reinforcement and inextensible steel reinforcement materials. The quantitative improvement of the new model (Simplified Stiffness Method) compared to the current AASHTO/FHWA Simplified Method is demonstrated through statistical analysis of load bias values (i.e., the ratio of measured to predicted reinforcement load).
    publisherAmerican Society of Civil Engineers
    titleImproved Simplified Method for Prediction of Loads in Reinforced Soil Walls
    typeJournal Paper
    journal volume141
    journal issue11
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0001355
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2015:;Volume ( 141 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian