YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Full Bayesian Method for the Development of Speed Models: Applications of GPS Probe Data

    Source: Journal of Transportation Engineering, Part A: Systems:;2012:;Volume ( 138 ):;issue: 010
    Author:
    Xin Pei
    ,
    S. C. Wong
    ,
    Y. C. Li
    ,
    N. N. Sze
    DOI: 10.1061/(ASCE)TE.1943-5436.0000428
    Publisher: American Society of Civil Engineers
    Abstract: Traffic speed is one of the basic variables that indicates the level of service of a road entity. It plays an essential role in transportation planning and management. This study attempts to establish a prediction model for speed distribution, in terms of average travel speed and standard deviation, using probe vehicle data in Hong Kong. Taking advantage of detailed traffic flow data obtained from the annual traffic census, a comprehensive traffic information database can be established using the geographical information system technique. The effects of traffic flow, road geometry, and weather conditions on speed distribution are determined using the Markov-chain Monte Carlo (MCMC) simulation approach full Bayesian method.
    • Download: (773.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Full Bayesian Method for the Development of Speed Models: Applications of GPS Probe Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/69445
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorXin Pei
    contributor authorS. C. Wong
    contributor authorY. C. Li
    contributor authorN. N. Sze
    date accessioned2017-05-08T22:02:15Z
    date available2017-05-08T22:02:15Z
    date copyrightOctober 2012
    date issued2012
    identifier other%28asce%29te%2E1943-5436%2E0000471.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/69445
    description abstractTraffic speed is one of the basic variables that indicates the level of service of a road entity. It plays an essential role in transportation planning and management. This study attempts to establish a prediction model for speed distribution, in terms of average travel speed and standard deviation, using probe vehicle data in Hong Kong. Taking advantage of detailed traffic flow data obtained from the annual traffic census, a comprehensive traffic information database can be established using the geographical information system technique. The effects of traffic flow, road geometry, and weather conditions on speed distribution are determined using the Markov-chain Monte Carlo (MCMC) simulation approach full Bayesian method.
    publisherAmerican Society of Civil Engineers
    titleFull Bayesian Method for the Development of Speed Models: Applications of GPS Probe Data
    typeJournal Paper
    journal volume138
    journal issue10
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)TE.1943-5436.0000428
    treeJournal of Transportation Engineering, Part A: Systems:;2012:;Volume ( 138 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian