YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interaction between Topographic and Process Parameters due to the Spatial Resolution of DEMs in Distributed Rainfall-Runoff Modeling

    Source: Journal of Hydrologic Engineering:;2009:;Volume ( 014 ):;issue: 010
    Author:
    Giha Lee
    ,
    Yasuto Tachikawa
    ,
    Kaoru Takara
    DOI: 10.1061/(ASCE)HE.1943-5584.0000098
    Publisher: American Society of Civil Engineers
    Abstract: Selecting an appropriate digital elevation model (DEM) resolution is an essential part of distributed rainfall-runoff modeling since the resolution affects parameter values and, in turn, leads to predictive uncertainty. Moreover, the DEM resolution directly determines the computational workload required for model simulation. This study conducted several experiments to clarify the interaction between topographic and process parameters due to the spatial resolution of DEMs in distributed rainfall-runoff modeling. First, five different spatial resolutions (from 50 m to 1 km) were used to analyze the effects of DEM resolution on the topographic and process parameters of a distributed rainfall-runoff model [kinematic wave method for subsurface and surface runoff (KWMSS)]. Second, parameter compatibility was tested with regard to the sensitivity of model performance to optimal parameter values for each DEM, by applying the best-performing parameter combinations for each resolution to the models based on differing resolutions. Finally, the sensitivity of model performances to artificially generated parameters (deviating ±10% from optimal parameter sets) was analyzed to determine whether fine spatial discretization yielded equally good model performance measures or indistinguishable hydrographs (i.e., equifinality). The results indicate that differing topographic parameters due to distinct DEM sizes require differing process parameters to produce identically good runoff simulations. In addition, the parameter compatibility assessment suggests that increased spatial complexity due to fine DEM resolution results in decreased identifiability in process parameters. Consequently, nonoptimal parameter values can yield acceptable model performance measures when modeling is based on DEM resolutions of 250 m and smaller. The results of the sensitivity analysis also indicate that fine spatial discretization can be a dominant factor causing equifinality as well as overparameterization in distributed rainfall-runoff modeling. These findings may provide a new perspective on the equifinality problem, which many consider to be caused by huge model parameter requirements when operating distributed models.
    • Download: (112.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interaction between Topographic and Process Parameters due to the Spatial Resolution of DEMs in Distributed Rainfall-Runoff Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/62963
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorGiha Lee
    contributor authorYasuto Tachikawa
    contributor authorKaoru Takara
    date accessioned2017-05-08T21:48:31Z
    date available2017-05-08T21:48:31Z
    date copyrightOctober 2009
    date issued2009
    identifier other%28asce%29he%2E1943-5584%2E0000118.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/62963
    description abstractSelecting an appropriate digital elevation model (DEM) resolution is an essential part of distributed rainfall-runoff modeling since the resolution affects parameter values and, in turn, leads to predictive uncertainty. Moreover, the DEM resolution directly determines the computational workload required for model simulation. This study conducted several experiments to clarify the interaction between topographic and process parameters due to the spatial resolution of DEMs in distributed rainfall-runoff modeling. First, five different spatial resolutions (from 50 m to 1 km) were used to analyze the effects of DEM resolution on the topographic and process parameters of a distributed rainfall-runoff model [kinematic wave method for subsurface and surface runoff (KWMSS)]. Second, parameter compatibility was tested with regard to the sensitivity of model performance to optimal parameter values for each DEM, by applying the best-performing parameter combinations for each resolution to the models based on differing resolutions. Finally, the sensitivity of model performances to artificially generated parameters (deviating ±10% from optimal parameter sets) was analyzed to determine whether fine spatial discretization yielded equally good model performance measures or indistinguishable hydrographs (i.e., equifinality). The results indicate that differing topographic parameters due to distinct DEM sizes require differing process parameters to produce identically good runoff simulations. In addition, the parameter compatibility assessment suggests that increased spatial complexity due to fine DEM resolution results in decreased identifiability in process parameters. Consequently, nonoptimal parameter values can yield acceptable model performance measures when modeling is based on DEM resolutions of 250 m and smaller. The results of the sensitivity analysis also indicate that fine spatial discretization can be a dominant factor causing equifinality as well as overparameterization in distributed rainfall-runoff modeling. These findings may provide a new perspective on the equifinality problem, which many consider to be caused by huge model parameter requirements when operating distributed models.
    publisherAmerican Society of Civil Engineers
    titleInteraction between Topographic and Process Parameters due to the Spatial Resolution of DEMs in Distributed Rainfall-Runoff Modeling
    typeJournal Paper
    journal volume14
    journal issue10
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000098
    treeJournal of Hydrologic Engineering:;2009:;Volume ( 014 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian