YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model

    Source: Journal of Hydrologic Engineering:;2009:;Volume ( 014 ):;issue: 009
    Author:
    Hone-Jay Chu
    ,
    Liang-Cheng Chang
    DOI: 10.1061/(ASCE)HE.1943-5584.0000070
    Publisher: American Society of Civil Engineers
    Abstract: The Muskingum model is the most widely used method for flood routing in hydrologic engineering. However, the application of the model still suffers from a lack of an efficient method for parameter estimation. Particle swarm optimization (PSO) is applied to the parameter estimation for the nonlinear Muskingum model. PSO does not need any initial guess of each parameter and thus avoids the subjective estimation usually found in traditional estimation methods and reduces the likelihood of finding a local optimum of the parameter values. Simulation results indicate that the proposed scheme can improve the accuracy of the Muskingum model for flood routing. A case study is presented to demonstrate that the proposed scheme is an alternative way to estimate the parameters of the Muskingum model.
    • Download: (509.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/62954
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorHone-Jay Chu
    contributor authorLiang-Cheng Chang
    date accessioned2017-05-08T21:48:30Z
    date available2017-05-08T21:48:30Z
    date copyrightSeptember 2009
    date issued2009
    identifier other%28asce%29he%2E1943-5584%2E0000107.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/62954
    description abstractThe Muskingum model is the most widely used method for flood routing in hydrologic engineering. However, the application of the model still suffers from a lack of an efficient method for parameter estimation. Particle swarm optimization (PSO) is applied to the parameter estimation for the nonlinear Muskingum model. PSO does not need any initial guess of each parameter and thus avoids the subjective estimation usually found in traditional estimation methods and reduces the likelihood of finding a local optimum of the parameter values. Simulation results indicate that the proposed scheme can improve the accuracy of the Muskingum model for flood routing. A case study is presented to demonstrate that the proposed scheme is an alternative way to estimate the parameters of the Muskingum model.
    publisherAmerican Society of Civil Engineers
    titleApplying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model
    typeJournal Paper
    journal volume14
    journal issue9
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000070
    treeJournal of Hydrologic Engineering:;2009:;Volume ( 014 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian