| contributor author | Hone-Jay Chu | |
| contributor author | Liang-Cheng Chang | |
| date accessioned | 2017-05-08T21:48:30Z | |
| date available | 2017-05-08T21:48:30Z | |
| date copyright | September 2009 | |
| date issued | 2009 | |
| identifier other | %28asce%29he%2E1943-5584%2E0000107.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/62954 | |
| description abstract | The Muskingum model is the most widely used method for flood routing in hydrologic engineering. However, the application of the model still suffers from a lack of an efficient method for parameter estimation. Particle swarm optimization (PSO) is applied to the parameter estimation for the nonlinear Muskingum model. PSO does not need any initial guess of each parameter and thus avoids the subjective estimation usually found in traditional estimation methods and reduces the likelihood of finding a local optimum of the parameter values. Simulation results indicate that the proposed scheme can improve the accuracy of the Muskingum model for flood routing. A case study is presented to demonstrate that the proposed scheme is an alternative way to estimate the parameters of the Muskingum model. | |
| publisher | American Society of Civil Engineers | |
| title | Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model | |
| type | Journal Paper | |
| journal volume | 14 | |
| journal issue | 9 | |
| journal title | Journal of Hydrologic Engineering | |
| identifier doi | 10.1061/(ASCE)HE.1943-5584.0000070 | |
| tree | Journal of Hydrologic Engineering:;2009:;Volume ( 014 ):;issue: 009 | |
| contenttype | Fulltext | |