YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Liquefaction Mitigation Using Bentonite Suspensions

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2013:;Volume ( 139 ):;issue: 008
    Author:
    C. S.
    ,
    El Mohtar
    ,
    Bobet
    ,
    M. C.
    ,
    Santagata
    ,
    V. P.
    ,
    Drnevich
    ,
    C. T.
    ,
    Johnston
    DOI: 10.1061/(ASCE)GT.1943-5606.0000865
    Publisher: American Society of Civil Engineers
    Abstract: Ottawa sand specimens premixed with 0, 3, and 5% bentonite by dry mass of sand were tested under undrained static and cyclic loading to investigate the effects of bentonite on the static and cyclic shear strength of the sand. The results show that allowing the bentonite to hydrate within the sand pore space increases the cyclic resistance of the sand. For the same skeleton relative density and cyclic stress ratio, cyclic tests on specimens with sufficient hydration times showed a significant increase in the number of cycles required for liquefaction compared with clean sand. When the specimens were allowed an extended postconsolidation aging period, the cyclic resistance increased further. Resonant column and cyclic triaxial tests showed that this is a result of the delay in the generation of excess pore pressure in the presence of the bentonite suspension in the pore space. The improvement in cyclic behavior does not occur at the expense of the static resistance of the soil under working loads because undrained static triaxial tests on specimens with bentonite showed only a minor decrease in the small-strain internal friction angle compared with the clean sand, while the critical-state internal friction angle remained unchanged. To address the need to deliver the bentonite suspension in a sand deposit, a method for engineering the rheology of concentrated bentonite suspensions through the addition of sodium pyrophosphate (SPP) was developed. With the addition of 0.5% SPP by mass of clay, the viscosity of concentrated (10%) bentonite dispersions dropped to a value that allowed delivery of the bentonite into the sand matrix through permeation. Over time, the bentonite suspension recovered the thixotropic properties that ensured its effectiveness in mitigating liquefaction. As a result, sand specimens permeated with 10% bentonite suspensions showed a large increase in liquefaction resistance. Changes in the rheological properties of the pore fluid with time also explain the increase with aging of the cyclic resistance of the sand-bentonite specimens.
    • Download: (1.731Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Liquefaction Mitigation Using Bentonite Suspensions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/62683
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorC. S.
    contributor authorEl Mohtar
    contributor authorBobet
    contributor authorM. C.
    contributor authorSantagata
    contributor authorV. P.
    contributor authorDrnevich
    contributor authorC. T.
    contributor authorJohnston
    date accessioned2017-05-08T21:47:58Z
    date available2017-05-08T21:47:58Z
    date copyrightAugust 2013
    date issued2013
    identifier other%28asce%29gt%2E1943-5606%2E0000882.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/62683
    description abstractOttawa sand specimens premixed with 0, 3, and 5% bentonite by dry mass of sand were tested under undrained static and cyclic loading to investigate the effects of bentonite on the static and cyclic shear strength of the sand. The results show that allowing the bentonite to hydrate within the sand pore space increases the cyclic resistance of the sand. For the same skeleton relative density and cyclic stress ratio, cyclic tests on specimens with sufficient hydration times showed a significant increase in the number of cycles required for liquefaction compared with clean sand. When the specimens were allowed an extended postconsolidation aging period, the cyclic resistance increased further. Resonant column and cyclic triaxial tests showed that this is a result of the delay in the generation of excess pore pressure in the presence of the bentonite suspension in the pore space. The improvement in cyclic behavior does not occur at the expense of the static resistance of the soil under working loads because undrained static triaxial tests on specimens with bentonite showed only a minor decrease in the small-strain internal friction angle compared with the clean sand, while the critical-state internal friction angle remained unchanged. To address the need to deliver the bentonite suspension in a sand deposit, a method for engineering the rheology of concentrated bentonite suspensions through the addition of sodium pyrophosphate (SPP) was developed. With the addition of 0.5% SPP by mass of clay, the viscosity of concentrated (10%) bentonite dispersions dropped to a value that allowed delivery of the bentonite into the sand matrix through permeation. Over time, the bentonite suspension recovered the thixotropic properties that ensured its effectiveness in mitigating liquefaction. As a result, sand specimens permeated with 10% bentonite suspensions showed a large increase in liquefaction resistance. Changes in the rheological properties of the pore fluid with time also explain the increase with aging of the cyclic resistance of the sand-bentonite specimens.
    publisherAmerican Society of Civil Engineers
    titleLiquefaction Mitigation Using Bentonite Suspensions
    typeJournal Paper
    journal volume139
    journal issue8
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0000865
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2013:;Volume ( 139 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian