YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Geotechnical Parameters Affecting Electrical Resistivity of Compacted Clays

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2012:;Volume ( 138 ):;issue: 012
    Author:
    Kibria
    ,
    M. S.
    ,
    Hossain
    DOI: 10.1061/(ASCE)GT.1943-5606.0000722
    Publisher: American Society of Civil Engineers
    Abstract: The use of resistivity imaging (RI) in subsurface investigation has increased in recent years. RI is a non-destructive method and provides a continuous image of the subsurface. However, only qualitative evaluation of the subsurface can be obtained from RI. The correlations between RI results and geotechnical engineering properties of soils have become important for site investigation using this method. The primary objective of the current study was to determine the geotechnical parameters affecting electrical resistivity of compacted clays. Understanding the influential factors will be helpful in determining the correlations between RI results and geotechnical properties of soil. The effects of moisture content, unit weight, degree of saturation, specific surface area, percentages of pores, and ion composition on soil resistivity were investigated. Soil samples used were classified as highly plastic clay (CH) according to the Unified Soil Classification System. High-energy X-ray fluorescence tests indicated the presence of high percentages of aluminum, silicon, and calcium ions in the samples. In addition, scanning electron microscope images were analyzed to identify clay structure and the distribution of pores. It was determined that the dominant clay mineral in the soil samples was montmorillonite. Soil resistivity tests were conducted in the laboratory at varying moisture contents and unit weights. Based on the experimental results, the average reduction in soil resistivity was 13.8 Ohm-m for an increase of moisture content from 10 to 20%. Test results indicated that soil resistivity decreased with an increase in moist unit weight. In addition, soil resistivity increased from 4.3 to 14.2 Ohm-m for an increase of surface area from 69.6 to 107.1 m
    • Download: (1.937Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Geotechnical Parameters Affecting Electrical Resistivity of Compacted Clays

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/62527
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorKibria
    contributor authorM. S.
    contributor authorHossain
    date accessioned2017-05-08T21:47:39Z
    date available2017-05-08T21:47:39Z
    date copyrightDecember 2012
    date issued2012
    identifier other%28asce%29gt%2E1943-5606%2E0000737.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/62527
    description abstractThe use of resistivity imaging (RI) in subsurface investigation has increased in recent years. RI is a non-destructive method and provides a continuous image of the subsurface. However, only qualitative evaluation of the subsurface can be obtained from RI. The correlations between RI results and geotechnical engineering properties of soils have become important for site investigation using this method. The primary objective of the current study was to determine the geotechnical parameters affecting electrical resistivity of compacted clays. Understanding the influential factors will be helpful in determining the correlations between RI results and geotechnical properties of soil. The effects of moisture content, unit weight, degree of saturation, specific surface area, percentages of pores, and ion composition on soil resistivity were investigated. Soil samples used were classified as highly plastic clay (CH) according to the Unified Soil Classification System. High-energy X-ray fluorescence tests indicated the presence of high percentages of aluminum, silicon, and calcium ions in the samples. In addition, scanning electron microscope images were analyzed to identify clay structure and the distribution of pores. It was determined that the dominant clay mineral in the soil samples was montmorillonite. Soil resistivity tests were conducted in the laboratory at varying moisture contents and unit weights. Based on the experimental results, the average reduction in soil resistivity was 13.8 Ohm-m for an increase of moisture content from 10 to 20%. Test results indicated that soil resistivity decreased with an increase in moist unit weight. In addition, soil resistivity increased from 4.3 to 14.2 Ohm-m for an increase of surface area from 69.6 to 107.1 m
    publisherAmerican Society of Civil Engineers
    titleInvestigation of Geotechnical Parameters Affecting Electrical Resistivity of Compacted Clays
    typeJournal Paper
    journal volume138
    journal issue12
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0000722
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2012:;Volume ( 138 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian