YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Compaction of Collapsible Soils Based on U.S. Case Histories

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2010:;Volume ( 136 ):;issue: 009
    Author:
    Kyle M. Rollins
    ,
    Jihyoung Kim
    DOI: 10.1061/(ASCE)GT.1943-5606.0000331
    Publisher: American Society of Civil Engineers
    Abstract: Dynamic compaction (DC) is an economical approach for mitigating the hazard posed by collapsible soils particularly when they are deeper than 3–4 m. In this paper, case histories are provided for 15 projects at 10 locations in the United States where collapsible soils were treated with DC. For each site the soil properties, compaction procedures, and subsequent improvement are summarized. Although cohesionless and low-plasticity collapsible soils were successfully compacted, clay layers in the profile appeared to absorb energy and severely reduced compaction effectiveness. Correlations are presented for estimating the maximum depth of improvement, the degree of improvement versus depth, the depth of craters, and the level of vibration based on measurements made at the various sites. The compactive energy per volume was typically higher than for noncollapsible soils because collapsible soils are usually loose but relatively stiff. The maximum depth of improvement was similar to that for noncollapsible soils; however, significant scatter was observed about the best-fit line. Improvement was nonuniform with nearly 80% of the total improvement occurring within the top 60% of the improvement zone. The crater depth was related to a number of factors besides the drop energy including the number of drops, drop spacing, and contact pressure. The peak particle velocities were typically lower than those for noncollapsible soils at shorter distances, but the vibrations attenuated more slowly with distance.
    • Download: (1.064Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Compaction of Collapsible Soils Based on U.S. Case Histories

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/62107
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorKyle M. Rollins
    contributor authorJihyoung Kim
    date accessioned2017-05-08T21:46:50Z
    date available2017-05-08T21:46:50Z
    date copyrightSeptember 2010
    date issued2010
    identifier other%28asce%29gt%2E1943-5606%2E0000347.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/62107
    description abstractDynamic compaction (DC) is an economical approach for mitigating the hazard posed by collapsible soils particularly when they are deeper than 3–4 m. In this paper, case histories are provided for 15 projects at 10 locations in the United States where collapsible soils were treated with DC. For each site the soil properties, compaction procedures, and subsequent improvement are summarized. Although cohesionless and low-plasticity collapsible soils were successfully compacted, clay layers in the profile appeared to absorb energy and severely reduced compaction effectiveness. Correlations are presented for estimating the maximum depth of improvement, the degree of improvement versus depth, the depth of craters, and the level of vibration based on measurements made at the various sites. The compactive energy per volume was typically higher than for noncollapsible soils because collapsible soils are usually loose but relatively stiff. The maximum depth of improvement was similar to that for noncollapsible soils; however, significant scatter was observed about the best-fit line. Improvement was nonuniform with nearly 80% of the total improvement occurring within the top 60% of the improvement zone. The crater depth was related to a number of factors besides the drop energy including the number of drops, drop spacing, and contact pressure. The peak particle velocities were typically lower than those for noncollapsible soils at shorter distances, but the vibrations attenuated more slowly with distance.
    publisherAmerican Society of Civil Engineers
    titleDynamic Compaction of Collapsible Soils Based on U.S. Case Histories
    typeJournal Paper
    journal volume136
    journal issue9
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0000331
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2010:;Volume ( 136 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian