YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Percolation Threshold of Sand-Clay Binary Mixtures

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2010:;Volume ( 136 ):;issue: 002
    Author:
    John F. Peters
    ,
    Ernest S. Berney IV
    DOI: 10.1061/(ASCE)GT.1943-5606.0000211
    Publisher: American Society of Civil Engineers
    Abstract: Many poorly graded granular materials of engineering importance can be characterized as gap-graded binary mixtures. Such mixtures display a volume-change response at a threshold value of the coarse fraction that is reminiscent of systems described by percolation theory. An experimental investigation on a sand-clay mixture is presented that clearly displays threshold behavior and sheds light on the role that each soil fraction plays in transferring loads through the medium. There are two key effects. First, an analysis of void ratio of the interpore clay fraction for varying compaction energies reveals an abrupt reduction in clay density at the threshold fraction of sand, whereby it is virtually impossible to impart compaction on the clay fraction at sand contents exceeding this threshold. Second, although force chains cannot be observed directly, analysis of the sand in terms of its component void ratio, computed based on treating the clay as part of the void space, shows that the sand carries a majority of the load at component void ratios that are too high to form stable force chains. The traditional interrelationship between mean stress and void ratio based on critical state theory breaks down when the sand content nears its threshold fraction. When the sand content is near the threshold limit, increasing mean stress results in a greater dilative tendency. Results are compared with findings on consolidation of sand-bentonite mixtures, and so-called reverse behavior of sand-silt mixtures.
    • Download: (1.346Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Percolation Threshold of Sand-Clay Binary Mixtures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/61981
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorJohn F. Peters
    contributor authorErnest S. Berney IV
    date accessioned2017-05-08T21:46:38Z
    date available2017-05-08T21:46:38Z
    date copyrightFebruary 2010
    date issued2010
    identifier other%28asce%29gt%2E1943-5606%2E0000226.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/61981
    description abstractMany poorly graded granular materials of engineering importance can be characterized as gap-graded binary mixtures. Such mixtures display a volume-change response at a threshold value of the coarse fraction that is reminiscent of systems described by percolation theory. An experimental investigation on a sand-clay mixture is presented that clearly displays threshold behavior and sheds light on the role that each soil fraction plays in transferring loads through the medium. There are two key effects. First, an analysis of void ratio of the interpore clay fraction for varying compaction energies reveals an abrupt reduction in clay density at the threshold fraction of sand, whereby it is virtually impossible to impart compaction on the clay fraction at sand contents exceeding this threshold. Second, although force chains cannot be observed directly, analysis of the sand in terms of its component void ratio, computed based on treating the clay as part of the void space, shows that the sand carries a majority of the load at component void ratios that are too high to form stable force chains. The traditional interrelationship between mean stress and void ratio based on critical state theory breaks down when the sand content nears its threshold fraction. When the sand content is near the threshold limit, increasing mean stress results in a greater dilative tendency. Results are compared with findings on consolidation of sand-bentonite mixtures, and so-called reverse behavior of sand-silt mixtures.
    publisherAmerican Society of Civil Engineers
    titlePercolation Threshold of Sand-Clay Binary Mixtures
    typeJournal Paper
    journal volume136
    journal issue2
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0000211
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2010:;Volume ( 136 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian