YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Anisotropic Strength Evaluation of Clay Reinforced with Grout Piles

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2009:;Volume ( 135 ):;issue: 010
    Author:
    S. F. Su
    DOI: 10.1061/(ASCE)GT.1943-5606.0000091
    Publisher: American Society of Civil Engineers
    Abstract: Grout piles are often used to reinforce the base soil against base heave when carrying out deep excavations in soft clay. However, there is still a lack of an adequate criterion to describe the shear strength of clay reinforced with grout piles. In general, the anisotropic strength characteristic of clay reinforced with grout piles is more significant than that of clay. The objective of this work is to develop an anisotropic strength criterion for the reinforced soil mass. Only four parameters are needed in this anisotropic strength criterion: two are the strength properties of the in situ clay, namely, the axial compressive and axial extensive undrained shear strengths; another is the undrained shear strength of treated soil; and the final is the improvement ratio which is related to the spacing and layout pattern of the grout piles. To be used in two-dimensional undrained stability analysis, the suitability of this anisotropic strength criterion under plane strain conditions is verified by comparing the results with true triaxial test. The maximum difference between the calculated and laboratory measured shear strengths is less than 8%. The results of this study indicate that the anisotropic undrained shear strength of clay reinforced with grout piles under plane strain condition decreases with an increase in the angle between the vertical direction and the major principal stress and decreases with a decrease in the strength anisotropy ratio of clay reinforced with grout piles. However, there will be a greater improvement in the effect if the grout piles are installed in the active zone rather than in the passive zone. This is because the shear strength of a grout pile mobilized in the active zone is close to its maximum level.
    • Download: (2.944Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Anisotropic Strength Evaluation of Clay Reinforced with Grout Piles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/61857
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorS. F. Su
    date accessioned2017-05-08T21:46:25Z
    date available2017-05-08T21:46:25Z
    date copyrightOctober 2009
    date issued2009
    identifier other%28asce%29gt%2E1943-5606%2E0000105.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/61857
    description abstractGrout piles are often used to reinforce the base soil against base heave when carrying out deep excavations in soft clay. However, there is still a lack of an adequate criterion to describe the shear strength of clay reinforced with grout piles. In general, the anisotropic strength characteristic of clay reinforced with grout piles is more significant than that of clay. The objective of this work is to develop an anisotropic strength criterion for the reinforced soil mass. Only four parameters are needed in this anisotropic strength criterion: two are the strength properties of the in situ clay, namely, the axial compressive and axial extensive undrained shear strengths; another is the undrained shear strength of treated soil; and the final is the improvement ratio which is related to the spacing and layout pattern of the grout piles. To be used in two-dimensional undrained stability analysis, the suitability of this anisotropic strength criterion under plane strain conditions is verified by comparing the results with true triaxial test. The maximum difference between the calculated and laboratory measured shear strengths is less than 8%. The results of this study indicate that the anisotropic undrained shear strength of clay reinforced with grout piles under plane strain condition decreases with an increase in the angle between the vertical direction and the major principal stress and decreases with a decrease in the strength anisotropy ratio of clay reinforced with grout piles. However, there will be a greater improvement in the effect if the grout piles are installed in the active zone rather than in the passive zone. This is because the shear strength of a grout pile mobilized in the active zone is close to its maximum level.
    publisherAmerican Society of Civil Engineers
    titleAnisotropic Strength Evaluation of Clay Reinforced with Grout Piles
    typeJournal Paper
    journal volume135
    journal issue10
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)GT.1943-5606.0000091
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2009:;Volume ( 135 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian