YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiscale Modeling of Flood-Induced Piping in River Levees

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2008:;Volume ( 134 ):;issue: 009
    Author:
    Usama El Shamy
    ,
    Firat Aydin
    DOI: 10.1061/(ASCE)1090-0241(2008)134:9(1385)
    Publisher: American Society of Civil Engineers
    Abstract: A three-dimensional transient fully coupled fluid-particle model is utilized to simulate flood-induced piping under river levees and taking into account the effects of soil-fluid-structure interactions. The porous soil medium is modeled as a mixture of two phases, namely the fluid phase (water) and the particulate solid phase. The fluid is idealized as a continuum by using an averaged form of Navier–Stokes equations that accounts for the presence of the solid particles. These particles are modeled at a microscale using the discrete element method. The interphase momentum transfer is modeled using an established relationship that accounts for the dynamic change in porosity and possible occurrence of nonlinear losses. The hydraulic structure (levee) is modeled as an impervious rigid block and its motion is described by a combination of external and internal forces from the surrounding fluid and solid particles. A computational simulation is conducted to investigate the response of a granular deposit when subjected to a rapidly increasing head difference. The simulation provided information at the microscale level for the solid phase as well as at the macroscopic level for the pore-water flow. The settlement and failure mechanism of the structure were captured as the hydraulic head difference gradually increased and the solid phase underwent subsequent deformations. The results suggest that failure of such structures may occur suddenly and at hydraulic gradients well below the critical gradient. The proposed computational framework for analyzing river and flood-protection levees would provide a new dimension to the design of such vital geotechnical systems. The technique can be effectively used to investigate failure mechanisms under complex loading and flow conditions.
    • Download: (2.218Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiscale Modeling of Flood-Induced Piping in River Levees

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/53424
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorUsama El Shamy
    contributor authorFirat Aydin
    date accessioned2017-05-08T21:29:21Z
    date available2017-05-08T21:29:21Z
    date copyrightSeptember 2008
    date issued2008
    identifier other%28asce%291090-0241%282008%29134%3A9%281385%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/53424
    description abstractA three-dimensional transient fully coupled fluid-particle model is utilized to simulate flood-induced piping under river levees and taking into account the effects of soil-fluid-structure interactions. The porous soil medium is modeled as a mixture of two phases, namely the fluid phase (water) and the particulate solid phase. The fluid is idealized as a continuum by using an averaged form of Navier–Stokes equations that accounts for the presence of the solid particles. These particles are modeled at a microscale using the discrete element method. The interphase momentum transfer is modeled using an established relationship that accounts for the dynamic change in porosity and possible occurrence of nonlinear losses. The hydraulic structure (levee) is modeled as an impervious rigid block and its motion is described by a combination of external and internal forces from the surrounding fluid and solid particles. A computational simulation is conducted to investigate the response of a granular deposit when subjected to a rapidly increasing head difference. The simulation provided information at the microscale level for the solid phase as well as at the macroscopic level for the pore-water flow. The settlement and failure mechanism of the structure were captured as the hydraulic head difference gradually increased and the solid phase underwent subsequent deformations. The results suggest that failure of such structures may occur suddenly and at hydraulic gradients well below the critical gradient. The proposed computational framework for analyzing river and flood-protection levees would provide a new dimension to the design of such vital geotechnical systems. The technique can be effectively used to investigate failure mechanisms under complex loading and flow conditions.
    publisherAmerican Society of Civil Engineers
    titleMultiscale Modeling of Flood-Induced Piping in River Levees
    typeJournal Paper
    journal volume134
    journal issue9
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)1090-0241(2008)134:9(1385)
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2008:;Volume ( 134 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian