YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    OCR Prediction Using Support Vector Machine Based on Piezocone Data

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2008:;Volume ( 134 ):;issue: 006
    Author:
    Pijush Samui
    ,
    T. G. Sitharam
    ,
    Pradeep U. Kurup
    DOI: 10.1061/(ASCE)1090-0241(2008)134:6(894)
    Publisher: American Society of Civil Engineers
    Abstract: The determination of the overconsolidation ratio (OCR) of clay deposits is an important task in geotechnical engineering practice. This paper examines the potential of a support vector machine (SVM) for predicting the OCR of clays from piezocone penetration test data. SVM is a statistical learning theory based on a structural risk minimization principle that minimizes both error and weight terms. The five input variables used for the SVM model for prediction of OCR are the corrected cone resistance
    • Download: (93.95Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      OCR Prediction Using Support Vector Machine Based on Piezocone Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/53363
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorPijush Samui
    contributor authorT. G. Sitharam
    contributor authorPradeep U. Kurup
    date accessioned2017-05-08T21:29:15Z
    date available2017-05-08T21:29:15Z
    date copyrightJune 2008
    date issued2008
    identifier other%28asce%291090-0241%282008%29134%3A6%28894%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/53363
    description abstractThe determination of the overconsolidation ratio (OCR) of clay deposits is an important task in geotechnical engineering practice. This paper examines the potential of a support vector machine (SVM) for predicting the OCR of clays from piezocone penetration test data. SVM is a statistical learning theory based on a structural risk minimization principle that minimizes both error and weight terms. The five input variables used for the SVM model for prediction of OCR are the corrected cone resistance
    publisherAmerican Society of Civil Engineers
    titleOCR Prediction Using Support Vector Machine Based on Piezocone Data
    typeJournal Paper
    journal volume134
    journal issue6
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)1090-0241(2008)134:6(894)
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2008:;Volume ( 134 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian