YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Electrokinetic Remediation Modeling Incorporating Geochemical Effects

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2008:;Volume ( 134 ):;issue: 001
    Author:
    Ashraf Z. Al-Hamdan
    ,
    Krishna R. Reddy
    DOI: 10.1061/(ASCE)1090-0241(2008)134:1(91)
    Publisher: American Society of Civil Engineers
    Abstract: Electrokinetic remediation technology is one of the developing technologies that offers great promise for the cleanup of soils contaminated with heavy metals. However, the performance of an electrokinetic remediation system depends on the interaction of a complex set of interrelated system variables and parameters. Many of these interactions were addressed in this study by incorporating geochemical reactions into electrokinetic remediation modeling. A one-dimensional transport model was developed to predict the transport and speciation of heavy metals (chromium, nickel, and cadmium) in soil during electrokinetic remediation as a function of time and space. The model incorporates: (1) pH-dependent adsorption of contaminants to the soil surface; (2) sensitivity of soil surface potential and electroosmotic flow to the pore water properties; and (3) synergistic effects of multiple chemical species on electrokinetic remediation. The model considers that: (1) Electrical potential in the soil is constant with time; (2) surface complexation reactions are applicable in the highly concentrated clay suspensions; (3) the effect of temperature is negligible; and (4) dissolution of soil constituents is negligible. The predicted pH profiles, electroosmotic flow, and transport of chromium, nickel, and cadmium in kaolin soil during electrokinetic remediation were found to reasonably agree with the bench-scale electrokinetic experimental results. The predicted contaminant speciation and distribution (aqueous, adsorbed, and precipitated) allow for an understanding of the transport processes and chemical reactions that control electrokinetic remediation.
    • Download: (679.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Electrokinetic Remediation Modeling Incorporating Geochemical Effects

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/53234
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorAshraf Z. Al-Hamdan
    contributor authorKrishna R. Reddy
    date accessioned2017-05-08T21:29:04Z
    date available2017-05-08T21:29:04Z
    date copyrightJanuary 2008
    date issued2008
    identifier other%28asce%291090-0241%282008%29134%3A1%2891%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/53234
    description abstractElectrokinetic remediation technology is one of the developing technologies that offers great promise for the cleanup of soils contaminated with heavy metals. However, the performance of an electrokinetic remediation system depends on the interaction of a complex set of interrelated system variables and parameters. Many of these interactions were addressed in this study by incorporating geochemical reactions into electrokinetic remediation modeling. A one-dimensional transport model was developed to predict the transport and speciation of heavy metals (chromium, nickel, and cadmium) in soil during electrokinetic remediation as a function of time and space. The model incorporates: (1) pH-dependent adsorption of contaminants to the soil surface; (2) sensitivity of soil surface potential and electroosmotic flow to the pore water properties; and (3) synergistic effects of multiple chemical species on electrokinetic remediation. The model considers that: (1) Electrical potential in the soil is constant with time; (2) surface complexation reactions are applicable in the highly concentrated clay suspensions; (3) the effect of temperature is negligible; and (4) dissolution of soil constituents is negligible. The predicted pH profiles, electroosmotic flow, and transport of chromium, nickel, and cadmium in kaolin soil during electrokinetic remediation were found to reasonably agree with the bench-scale electrokinetic experimental results. The predicted contaminant speciation and distribution (aqueous, adsorbed, and precipitated) allow for an understanding of the transport processes and chemical reactions that control electrokinetic remediation.
    publisherAmerican Society of Civil Engineers
    titleElectrokinetic Remediation Modeling Incorporating Geochemical Effects
    typeJournal Paper
    journal volume134
    journal issue1
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)1090-0241(2008)134:1(91)
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2008:;Volume ( 134 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian