YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Key Parameters for Strength Control of Artificially Cemented Soils

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2007:;Volume ( 133 ):;issue: 002
    Author:
    Nilo Cesar Consoli
    ,
    Diego Foppa
    ,
    Lucas Festugato
    ,
    Karla Salvagni Heineck
    DOI: 10.1061/(ASCE)1090-0241(2007)133:2(197)
    Publisher: American Society of Civil Engineers
    Abstract: Often, the use of traditional techniques in geotechnical engineering faces obstacles of economical and environmental nature. The addition of cement becomes an attractive technique when the project requires improvement of the local soil. The treatment of soils with cement finds application, for instance, in the construction of pavement base layers, in slope protection of earth dams, and as a support layer for shallow foundations. However, there are no dosage methodologies based on rational criteria as exist in the case of the concrete technology, where the water/cement ratio plays a fundamental role in the assessment of the target strength. This study therefore aims to quantify the influence of the amount of cement, the porosity and the moisture content on the strength of a sandy soil artificially cemented, as well as to evaluate the use of a water/cement ratio and a voids/cement ratio to assess its unconfined compression strength. A number of unconfined compression tests, triaxial compression tests, and measurements of matric suction were carried out. The results show that the unconfined compression strength increased linearly with the increase in the cement content and exponentially with the reduction in porosity of the compacted mixture. The change in moisture content also has a marked effect on the unconfined compression strength of mixtures compacted at the same dry density. It was shown that, for the soil-cement mixture in an unsaturated state (which is usual for compacted fills), the water/cement ratio is not a good parameter for the assessment of unconfined compression strength. In contrast, the voids/cement ratio, defined as the ratio between the porosity of the compacted mixture and the volumetric cement content, is demonstrated to be the most appropriate parameter to assess the unconfined compression strength of the soil-cement mixture studied.
    • Download: (218.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Key Parameters for Strength Control of Artificially Cemented Soils

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/53091
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorNilo Cesar Consoli
    contributor authorDiego Foppa
    contributor authorLucas Festugato
    contributor authorKarla Salvagni Heineck
    date accessioned2017-05-08T21:28:50Z
    date available2017-05-08T21:28:50Z
    date copyrightFebruary 2007
    date issued2007
    identifier other%28asce%291090-0241%282007%29133%3A2%28197%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/53091
    description abstractOften, the use of traditional techniques in geotechnical engineering faces obstacles of economical and environmental nature. The addition of cement becomes an attractive technique when the project requires improvement of the local soil. The treatment of soils with cement finds application, for instance, in the construction of pavement base layers, in slope protection of earth dams, and as a support layer for shallow foundations. However, there are no dosage methodologies based on rational criteria as exist in the case of the concrete technology, where the water/cement ratio plays a fundamental role in the assessment of the target strength. This study therefore aims to quantify the influence of the amount of cement, the porosity and the moisture content on the strength of a sandy soil artificially cemented, as well as to evaluate the use of a water/cement ratio and a voids/cement ratio to assess its unconfined compression strength. A number of unconfined compression tests, triaxial compression tests, and measurements of matric suction were carried out. The results show that the unconfined compression strength increased linearly with the increase in the cement content and exponentially with the reduction in porosity of the compacted mixture. The change in moisture content also has a marked effect on the unconfined compression strength of mixtures compacted at the same dry density. It was shown that, for the soil-cement mixture in an unsaturated state (which is usual for compacted fills), the water/cement ratio is not a good parameter for the assessment of unconfined compression strength. In contrast, the voids/cement ratio, defined as the ratio between the porosity of the compacted mixture and the volumetric cement content, is demonstrated to be the most appropriate parameter to assess the unconfined compression strength of the soil-cement mixture studied.
    publisherAmerican Society of Civil Engineers
    titleKey Parameters for Strength Control of Artificially Cemented Soils
    typeJournal Paper
    journal volume133
    journal issue2
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)1090-0241(2007)133:2(197)
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2007:;Volume ( 133 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian