YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Factors Affecting Strain Distribution in Geosynthetics

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2006:;Volume ( 132 ):;issue: 001
    Author:
    M. Emin Kutay
    ,
    Murat Guler
    ,
    Ahmet H. Aydilek
    DOI: 10.1061/(ASCE)1090-0241(2006)132:1(1)
    Publisher: American Society of Civil Engineers
    Abstract: Localized strains due to production defects, seams, and punctured zones significantly affect mechanical performance of geosynthetic materials. Accurate determination of localized strains becomes particularly important for quality control/quality assurance evaluation of these materials and may play a critical role in design problems. A battery of tensile tests was conducted on 12 different geosynthetics to assess the effects of seam type, puncture, and clamping techniques on strain distributions. Digital images of the geosynthetic specimens were captured during testing, and the analyses of time-lapsed images were performed using two optical flow techniques to define strain distributions within specimens as well as in the vicinity of grip locations and seam zones. The results indicated that the optical flow techniques used in this study can successfully define the distribution of strains in a geosynthetic test specimen during tensile testing. The magnitude of lateral strains was small in polypropylene wovens and geogrids, whereas it was significant in polyester wovens and nonwovens. Large strains developed in the vicinity of seams regardless of the clamping technique used. The strains at the seam zones measured with hydraulic grips were significantly higher than those measured with roller grips. Sewn geosynthetics generally experienced lower lateral strain-to-axial strain ratios. The average axial strain appears to be insensitive to puncture regardless of the type of geosynthetics considered or the clamping technique used.
    • Download: (1.323Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Factors Affecting Strain Distribution in Geosynthetics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/52771
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorM. Emin Kutay
    contributor authorMurat Guler
    contributor authorAhmet H. Aydilek
    date accessioned2017-05-08T21:28:20Z
    date available2017-05-08T21:28:20Z
    date copyrightJanuary 2006
    date issued2006
    identifier other%28asce%291090-0241%282006%29132%3A1%281%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/52771
    description abstractLocalized strains due to production defects, seams, and punctured zones significantly affect mechanical performance of geosynthetic materials. Accurate determination of localized strains becomes particularly important for quality control/quality assurance evaluation of these materials and may play a critical role in design problems. A battery of tensile tests was conducted on 12 different geosynthetics to assess the effects of seam type, puncture, and clamping techniques on strain distributions. Digital images of the geosynthetic specimens were captured during testing, and the analyses of time-lapsed images were performed using two optical flow techniques to define strain distributions within specimens as well as in the vicinity of grip locations and seam zones. The results indicated that the optical flow techniques used in this study can successfully define the distribution of strains in a geosynthetic test specimen during tensile testing. The magnitude of lateral strains was small in polypropylene wovens and geogrids, whereas it was significant in polyester wovens and nonwovens. Large strains developed in the vicinity of seams regardless of the clamping technique used. The strains at the seam zones measured with hydraulic grips were significantly higher than those measured with roller grips. Sewn geosynthetics generally experienced lower lateral strain-to-axial strain ratios. The average axial strain appears to be insensitive to puncture regardless of the type of geosynthetics considered or the clamping technique used.
    publisherAmerican Society of Civil Engineers
    titleAnalysis of Factors Affecting Strain Distribution in Geosynthetics
    typeJournal Paper
    journal volume132
    journal issue1
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)1090-0241(2006)132:1(1)
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2006:;Volume ( 132 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian