YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Lateral Response of Piles in Liquefying Soil

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2005:;Volume ( 131 ):;issue: 012
    Author:
    D. S. Liyanapathirana
    ,
    H. G. Poulos
    DOI: 10.1061/(ASCE)1090-0241(2005)131:12(1466)
    Publisher: American Society of Civil Engineers
    Abstract: Soil liquefaction is one of the major factors affecting the behavior of piles founded in seismically active areas. Although methods are available for seismic analysis of pile foundations, in many of them, the supporting soil is assumed to be an elastic material. Here a numerical model is presented which takes into account the reduction of soil stiffness and strength due to pore pressure generation and subsequent soil liquefaction, in addition to the material nonlinearity. Results obtained from the new method are compared with centrifuge test data and show excellent agreement with the observed pile behavior during these tests. To investigate the effects of soil liquefaction on the internal pile response, a parametric study is carried out for a range of material and geometric properties of the pile and surrounding soil. The effect of the nature of the earthquake on pile performance has been studied using 25 earthquake records scaled to different acceleration levels. It is shown that the “Arias intensity” and the natural frequency of the earthquake ground motion have a significant influence on the pile performance in liquefying soil. Existing elastic analysis methods for kinematic pile loading in layered soil deposits with soft and stiff layers are applied to the soil deposits with liquefying and nonliquefying layers. It is found that these simple design methods, which were derived assuming that the soil is a linear elastic material, do not predict bending moments accurately when nonlinear behavior of soil and effects of pore pressure generation are significant. Also a simplified limit equilibrium method proposed for the evaluation of bending response of single pile foundations subjected to lateral spreading is compared with the bending response obtained from the proposed numerical model. It is found that the limit equilibrium method, which is developed based on the centrifuge test results, does not give accurate results when the pile diameter and the thickness of the liquefied soil layer deviates from the values used for the centrifuge tests.
    • Download: (597.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Lateral Response of Piles in Liquefying Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/52630
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorD. S. Liyanapathirana
    contributor authorH. G. Poulos
    date accessioned2017-05-08T21:28:06Z
    date available2017-05-08T21:28:06Z
    date copyrightDecember 2005
    date issued2005
    identifier other%28asce%291090-0241%282005%29131%3A12%281466%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/52630
    description abstractSoil liquefaction is one of the major factors affecting the behavior of piles founded in seismically active areas. Although methods are available for seismic analysis of pile foundations, in many of them, the supporting soil is assumed to be an elastic material. Here a numerical model is presented which takes into account the reduction of soil stiffness and strength due to pore pressure generation and subsequent soil liquefaction, in addition to the material nonlinearity. Results obtained from the new method are compared with centrifuge test data and show excellent agreement with the observed pile behavior during these tests. To investigate the effects of soil liquefaction on the internal pile response, a parametric study is carried out for a range of material and geometric properties of the pile and surrounding soil. The effect of the nature of the earthquake on pile performance has been studied using 25 earthquake records scaled to different acceleration levels. It is shown that the “Arias intensity” and the natural frequency of the earthquake ground motion have a significant influence on the pile performance in liquefying soil. Existing elastic analysis methods for kinematic pile loading in layered soil deposits with soft and stiff layers are applied to the soil deposits with liquefying and nonliquefying layers. It is found that these simple design methods, which were derived assuming that the soil is a linear elastic material, do not predict bending moments accurately when nonlinear behavior of soil and effects of pore pressure generation are significant. Also a simplified limit equilibrium method proposed for the evaluation of bending response of single pile foundations subjected to lateral spreading is compared with the bending response obtained from the proposed numerical model. It is found that the limit equilibrium method, which is developed based on the centrifuge test results, does not give accurate results when the pile diameter and the thickness of the liquefied soil layer deviates from the values used for the centrifuge tests.
    publisherAmerican Society of Civil Engineers
    titleSeismic Lateral Response of Piles in Liquefying Soil
    typeJournal Paper
    journal volume131
    journal issue12
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)1090-0241(2005)131:12(1466)
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2005:;Volume ( 131 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian