YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Hysteresis on Steady-State Infiltration in Unsaturated Slopes

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2004:;Volume ( 130 ):;issue: 009
    Author:
    Denny Tami
    ,
    Harianto Rahardjo
    ,
    Eng-Choon Leong
    DOI: 10.1061/(ASCE)1090-0241(2004)130:9(956)
    Publisher: American Society of Civil Engineers
    Abstract: Hysteresis is a common feature exhibited in hydraulic properties of an unsaturated soil. For a specific matric suction, water content or coefficient of permeability on a wetting curve is always lower than those found on a drying curve. This paper focuses on hysteresis observed in steady-state infiltration tests in a laboratory slope model. The slope model consisted of a 400 mm thick fine sand layer overlying a 200 mm thick gravelly sand layer at a slope angle of 30°. The slope model was subjected to artificial rainfalls of different intensities. The slope model was instrumented to continuously measure the changes in pore-water pressure or matric suction, volumetric water content, and water balance during an experiment. Two experiments with similar applied precipitation intensities were conducted on soils that experienced adsorption and desorption processes. For the adsorption process, the slope model was first subjected to an antecedent steady-state rainfall with an intensity lower than the intensity of the incident steady-state rainfall. In the adsorption process, the water content of the soils increased during the incident rainfall prior to achieving the steady-state condition. For the desorption process, the slope model was first subjected to an antecedent steady-state rainfall with an intensity higher than the intensity of the incident steady-state rainfall. In the desorption process, the water content of the soils actually decreased during the incident rainfall prior to achieving the steady-state condition. The results indicate that the matric suction distributions in soils experiencing the desorption process were higher than those observed in soils experiencing the adsorption process. The matric suctions within the slope during a steady-state infiltration were affected by the initial water content of the soil prior to the infiltration process. Numerical analyses, employing both drying and wetting hydraulic properties of the soils, were performed to study the difference in matric suctions as observed in the experiments. The results suggest that the hysteretic behavior of the soil affects the matric suction distribution within the slope at steady-state conditions. The appropriate hydraulic properties of the soils (i.e., drying or wetting) should be used in accordance with the process that the soils actually experience (i.e., desorption process or adsorption process) even though the slope is under a steady-state rainfall condition.
    • Download: (555.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Hysteresis on Steady-State Infiltration in Unsaturated Slopes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/52564
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorDenny Tami
    contributor authorHarianto Rahardjo
    contributor authorEng-Choon Leong
    date accessioned2017-05-08T21:28:02Z
    date available2017-05-08T21:28:02Z
    date copyrightSeptember 2004
    date issued2004
    identifier other%28asce%291090-0241%282004%29130%3A9%28956%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/52564
    description abstractHysteresis is a common feature exhibited in hydraulic properties of an unsaturated soil. For a specific matric suction, water content or coefficient of permeability on a wetting curve is always lower than those found on a drying curve. This paper focuses on hysteresis observed in steady-state infiltration tests in a laboratory slope model. The slope model consisted of a 400 mm thick fine sand layer overlying a 200 mm thick gravelly sand layer at a slope angle of 30°. The slope model was subjected to artificial rainfalls of different intensities. The slope model was instrumented to continuously measure the changes in pore-water pressure or matric suction, volumetric water content, and water balance during an experiment. Two experiments with similar applied precipitation intensities were conducted on soils that experienced adsorption and desorption processes. For the adsorption process, the slope model was first subjected to an antecedent steady-state rainfall with an intensity lower than the intensity of the incident steady-state rainfall. In the adsorption process, the water content of the soils increased during the incident rainfall prior to achieving the steady-state condition. For the desorption process, the slope model was first subjected to an antecedent steady-state rainfall with an intensity higher than the intensity of the incident steady-state rainfall. In the desorption process, the water content of the soils actually decreased during the incident rainfall prior to achieving the steady-state condition. The results indicate that the matric suction distributions in soils experiencing the desorption process were higher than those observed in soils experiencing the adsorption process. The matric suctions within the slope during a steady-state infiltration were affected by the initial water content of the soil prior to the infiltration process. Numerical analyses, employing both drying and wetting hydraulic properties of the soils, were performed to study the difference in matric suctions as observed in the experiments. The results suggest that the hysteretic behavior of the soil affects the matric suction distribution within the slope at steady-state conditions. The appropriate hydraulic properties of the soils (i.e., drying or wetting) should be used in accordance with the process that the soils actually experience (i.e., desorption process or adsorption process) even though the slope is under a steady-state rainfall condition.
    publisherAmerican Society of Civil Engineers
    titleEffects of Hysteresis on Steady-State Infiltration in Unsaturated Slopes
    typeJournal Paper
    journal volume130
    journal issue9
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)1090-0241(2004)130:9(956)
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2004:;Volume ( 130 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian