YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    State-Dependent Strength of Sands from the Perspective of Unified Modeling

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2004:;Volume ( 130 ):;issue: 002
    Author:
    J. Yang
    ,
    X. S. Li
    DOI: 10.1061/(ASCE)1090-0241(2004)130:2(186)
    Publisher: American Society of Civil Engineers
    Abstract: This paper discusses the state-dependent strength of sands from the perspective of unified modeling in triaxial stress space. The modeling accounts for the dependence of dilatancy on the material internal state during the deformation history and thus has the capability of describing the behavior of a sand with different densities and stress levels in a unified way. Analyses are made for the Toyoura sand whose behavior has been well documented by laboratory tests and meanwhile comparisons with experimental observations on other sands are presented. It is shown that the influence of density and stress level on the strength of sands can be combined through the state-dependent dilatancy such that both the peak friction angle and maximum dilation angle are well correlated with a so-called state parameter. A unique, linear relationship is suggested between the peak friction angle and the maximum dilation angle for a wide range of densities and stress levels. The relationship, which is found to be in good agreement with recent experimental findings on a different sand, implies that the excess angle of shearing due to dilatancy in triaxial conditions is less than 40% of that in plane strain conditions. A careful identification of the deficiency of the classical Rowe’s and Cam-clay’s stress–dilatancy relations reveals that the unique relationship between the stress ratio and dilatancy assumed in both relations does not exist and thereby obstructs unified modeling of the sand behavior over a full range of densities and stress levels.
    • Download: (825.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      State-Dependent Strength of Sands from the Perspective of Unified Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/52461
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorJ. Yang
    contributor authorX. S. Li
    date accessioned2017-05-08T21:27:55Z
    date available2017-05-08T21:27:55Z
    date copyrightFebruary 2004
    date issued2004
    identifier other%28asce%291090-0241%282004%29130%3A2%28186%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/52461
    description abstractThis paper discusses the state-dependent strength of sands from the perspective of unified modeling in triaxial stress space. The modeling accounts for the dependence of dilatancy on the material internal state during the deformation history and thus has the capability of describing the behavior of a sand with different densities and stress levels in a unified way. Analyses are made for the Toyoura sand whose behavior has been well documented by laboratory tests and meanwhile comparisons with experimental observations on other sands are presented. It is shown that the influence of density and stress level on the strength of sands can be combined through the state-dependent dilatancy such that both the peak friction angle and maximum dilation angle are well correlated with a so-called state parameter. A unique, linear relationship is suggested between the peak friction angle and the maximum dilation angle for a wide range of densities and stress levels. The relationship, which is found to be in good agreement with recent experimental findings on a different sand, implies that the excess angle of shearing due to dilatancy in triaxial conditions is less than 40% of that in plane strain conditions. A careful identification of the deficiency of the classical Rowe’s and Cam-clay’s stress–dilatancy relations reveals that the unique relationship between the stress ratio and dilatancy assumed in both relations does not exist and thereby obstructs unified modeling of the sand behavior over a full range of densities and stress levels.
    publisherAmerican Society of Civil Engineers
    titleState-Dependent Strength of Sands from the Perspective of Unified Modeling
    typeJournal Paper
    journal volume130
    journal issue2
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)1090-0241(2004)130:2(186)
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2004:;Volume ( 130 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian