YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study on the Aging of Sands

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2004:;Volume ( 130 ):;issue: 010
    Author:
    Christopher D. P. Baxter
    ,
    James K. Mitchell
    DOI: 10.1061/(ASCE)1090-0241(2004)130:10(1051)
    Publisher: American Society of Civil Engineers
    Abstract: Aging effects in sand, such as increases in cone penetration resistance with time after deposition and/or densification, are known to occur in the field, but the causes of these effects are not fully understood. A laboratory testing program was designed to study mechanisms responsible for aging effects under controlled conditions. The testing program included measurements of the small strain shear modulus, electrical conductivity, pore fluid chemistry, and minicone penetration resistance after different periods of aging. Two different sands were tested, and aging effects were evaluated for different combinations of relative density, temperature, and pore fluid composition. Increases in the small strain shear modulus were observed throughout most of the tests, and chemical analyses suggest that precipitation of carbonate and silica occurred in two tests. Despite these changes, there was no corresponding increase in the minicone penetration resistance with time in any of the tests. It is unlikely that precipitation of carbonate or silica is responsible for aging effects in sands; other possible mechanisms include arching due to dissipation of blast gases and redistribution of stresses through the soil skeleton. An additional possibility is that the boundary conditions imposed by the laboratory tests obscure changes in penetration resistance that would be measured had the volume of sand tested been much larger. The implications of these findings in terms of other published field and laboratory studies are discussed.
    • Download: (565.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study on the Aging of Sands

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/52423
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorChristopher D. P. Baxter
    contributor authorJames K. Mitchell
    date accessioned2017-05-08T21:27:51Z
    date available2017-05-08T21:27:51Z
    date copyrightOctober 2004
    date issued2004
    identifier other%28asce%291090-0241%282004%29130%3A10%281051%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/52423
    description abstractAging effects in sand, such as increases in cone penetration resistance with time after deposition and/or densification, are known to occur in the field, but the causes of these effects are not fully understood. A laboratory testing program was designed to study mechanisms responsible for aging effects under controlled conditions. The testing program included measurements of the small strain shear modulus, electrical conductivity, pore fluid chemistry, and minicone penetration resistance after different periods of aging. Two different sands were tested, and aging effects were evaluated for different combinations of relative density, temperature, and pore fluid composition. Increases in the small strain shear modulus were observed throughout most of the tests, and chemical analyses suggest that precipitation of carbonate and silica occurred in two tests. Despite these changes, there was no corresponding increase in the minicone penetration resistance with time in any of the tests. It is unlikely that precipitation of carbonate or silica is responsible for aging effects in sands; other possible mechanisms include arching due to dissipation of blast gases and redistribution of stresses through the soil skeleton. An additional possibility is that the boundary conditions imposed by the laboratory tests obscure changes in penetration resistance that would be measured had the volume of sand tested been much larger. The implications of these findings in terms of other published field and laboratory studies are discussed.
    publisherAmerican Society of Civil Engineers
    titleExperimental Study on the Aging of Sands
    typeJournal Paper
    journal volume130
    journal issue10
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/(ASCE)1090-0241(2004)130:10(1051)
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2004:;Volume ( 130 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian