YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of Fracture Assessment Method Considering Constraint Effect to Ductile-Brittle Transition Temperature Region

    Source: Journal of Pressure Vessel Technology:;2025:;volume( 147 ):;issue: 005::page 51501-1
    Author:
    Hojo, Kiminobu
    ,
    Hirota, Takatoshi
    ,
    Nagoshi, Yasuto
    ,
    Fukahori, Takuya
    ,
    Sakima, Kimihisa
    ,
    Ohata, Mitsuru
    ,
    Minami, Fumiyoshi
    DOI: 10.1115/1.4068434
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: With the long-term operation of nuclear power plants, evaluating the integrity of reactor pressure vessels (RPVs) against neutron irradiation has become increasingly important. In the context of pressurized thermal shock (PTS) evaluation, the flaw stability of the reactor vessel has been assessed using fracture mechanics for a postulated flaw. Neutron irradiation may reduce the safety margins of certain plants, potentially raising concerns regarding nuclear safety. For this countermeasure, the applicability of the Beremin model, which is a statistical procedure considering the stress multi-axiality, has been investigated to mitigate excessive conservatism in the conventional fracture mechanics and to perform a realistic fracture evaluation using a physical model for cleavage fracture. In this paper, the applicability of a model coupled with the Beremin model with the Gurson–Tvergaard–Needleman (GTN) models was examined to establish a more precise fracture evaluation method for realistic structures in which cleavage fracture occurs after a small ductile crack growth in the ductile-brittle transition temperature (DBTT) region. After determining the parameters of the Beremin model to characterize cleavage fracture and the GTN model parameters to characterize ductile fracture with the C(T) and SE(B) specimens, these parameter values were used in the coupled model to predict the 5% and 95% confidence limits of critical cleavage fracture of a surface-flawed plate specimen with a thickness of 50 mm under bending or tensile load with nearly the same constraint as a reactor vessel. When the fracture tests using a flat plate with a surface flaw of depth/thickness 0.1 under bending or tensile load were performed at temperatures –80 °C and –120 °C, most of all the critical Ks of the specimens were within the upper and lower bounds of the predicted critical K values. At the temperature –80 °C which caused a small ductile crack, the predicted critical K values by the coupled model were better than those by the Beremin model comparing with the test data. As a result, it was confirmed that the coupled model was a proper procedure for the cleavage fracture associated with small ductile crack growth.
    • Download: (4.512Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of Fracture Assessment Method Considering Constraint Effect to Ductile-Brittle Transition Temperature Region

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4308461
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorHojo, Kiminobu
    contributor authorHirota, Takatoshi
    contributor authorNagoshi, Yasuto
    contributor authorFukahori, Takuya
    contributor authorSakima, Kimihisa
    contributor authorOhata, Mitsuru
    contributor authorMinami, Fumiyoshi
    date accessioned2025-08-20T09:32:58Z
    date available2025-08-20T09:32:58Z
    date copyright5/8/2025 12:00:00 AM
    date issued2025
    identifier issn0094-9930
    identifier otherpvt_147_05_051501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4308461
    description abstractWith the long-term operation of nuclear power plants, evaluating the integrity of reactor pressure vessels (RPVs) against neutron irradiation has become increasingly important. In the context of pressurized thermal shock (PTS) evaluation, the flaw stability of the reactor vessel has been assessed using fracture mechanics for a postulated flaw. Neutron irradiation may reduce the safety margins of certain plants, potentially raising concerns regarding nuclear safety. For this countermeasure, the applicability of the Beremin model, which is a statistical procedure considering the stress multi-axiality, has been investigated to mitigate excessive conservatism in the conventional fracture mechanics and to perform a realistic fracture evaluation using a physical model for cleavage fracture. In this paper, the applicability of a model coupled with the Beremin model with the Gurson–Tvergaard–Needleman (GTN) models was examined to establish a more precise fracture evaluation method for realistic structures in which cleavage fracture occurs after a small ductile crack growth in the ductile-brittle transition temperature (DBTT) region. After determining the parameters of the Beremin model to characterize cleavage fracture and the GTN model parameters to characterize ductile fracture with the C(T) and SE(B) specimens, these parameter values were used in the coupled model to predict the 5% and 95% confidence limits of critical cleavage fracture of a surface-flawed plate specimen with a thickness of 50 mm under bending or tensile load with nearly the same constraint as a reactor vessel. When the fracture tests using a flat plate with a surface flaw of depth/thickness 0.1 under bending or tensile load were performed at temperatures –80 °C and –120 °C, most of all the critical Ks of the specimens were within the upper and lower bounds of the predicted critical K values. At the temperature –80 °C which caused a small ductile crack, the predicted critical K values by the coupled model were better than those by the Beremin model comparing with the test data. As a result, it was confirmed that the coupled model was a proper procedure for the cleavage fracture associated with small ductile crack growth.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleApplication of Fracture Assessment Method Considering Constraint Effect to Ductile-Brittle Transition Temperature Region
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4068434
    journal fristpage51501-1
    journal lastpage51501-17
    page17
    treeJournal of Pressure Vessel Technology:;2025:;volume( 147 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian