YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimating Motor Control Difficulty in Human–Robot Fine Co-Manipulation Tasks Using Brain Activities

    Source: Journal of Computing and Information Science in Engineering:;2025:;volume( 025 ):;issue: 005::page 51004-1
    Author:
    Manjunatha, Hemanth
    ,
    Memar, Amirhossein H.
    ,
    Esfahani, Ehsan Tarkesh
    DOI: 10.1115/1.4068083
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Improper controller parameter settings in physical human–robot interaction (pHRI) can lead to instability, compromising both safety and system performance. This study investigates the relationship between cognitive and physical aspects of co-manipulation by leveraging electroencephalography (EEG) to predict instability in physical human–robot interaction. Using elastic net regression and deep convolutional neural networks, we estimate instability as subjects guide a robot through predefined trajectories under varying admittance control settings. Our results show that EEG signals can predict instability up to 2 s before it manifests in force data. Moreover, the deep learning-based approach significantly outperforms elastic regression, achieving a notable (∼10%) improvement in predicting the instability index. These findings highlight the potential of EEG-based monitoring for enhancing real-time stability assessment in pHRI.
    • Download: (1.084Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimating Motor Control Difficulty in Human–Robot Fine Co-Manipulation Tasks Using Brain Activities

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4308409
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorManjunatha, Hemanth
    contributor authorMemar, Amirhossein H.
    contributor authorEsfahani, Ehsan Tarkesh
    date accessioned2025-08-20T09:31:11Z
    date available2025-08-20T09:31:11Z
    date copyright3/20/2025 12:00:00 AM
    date issued2025
    identifier issn1530-9827
    identifier otherjcise-24-1259.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4308409
    description abstractImproper controller parameter settings in physical human–robot interaction (pHRI) can lead to instability, compromising both safety and system performance. This study investigates the relationship between cognitive and physical aspects of co-manipulation by leveraging electroencephalography (EEG) to predict instability in physical human–robot interaction. Using elastic net regression and deep convolutional neural networks, we estimate instability as subjects guide a robot through predefined trajectories under varying admittance control settings. Our results show that EEG signals can predict instability up to 2 s before it manifests in force data. Moreover, the deep learning-based approach significantly outperforms elastic regression, achieving a notable (∼10%) improvement in predicting the instability index. These findings highlight the potential of EEG-based monitoring for enhancing real-time stability assessment in pHRI.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEstimating Motor Control Difficulty in Human–Robot Fine Co-Manipulation Tasks Using Brain Activities
    typeJournal Paper
    journal volume25
    journal issue5
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.4068083
    journal fristpage51004-1
    journal lastpage51004-9
    page9
    treeJournal of Computing and Information Science in Engineering:;2025:;volume( 025 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian