YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Hilbert Fractal Acoustic Metamaterials on Ventilation Noise Control

    Source: Journal of Vibration and Acoustics:;2025:;volume( 147 ):;issue: 002::page 21003-1
    Author:
    Karthik, R.
    ,
    Srinivasan, K.
    DOI: 10.1115/1.4067415
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Ventilation noise control devices often involve a trade-off between their size and ventilating performance, which limits the ability to reduce low-frequency sound in high-ventilation conditions. To address this challenge, the present study explores the use of Hilbert fractal-based design in ventilated metamaterials for improved acoustic performance. The sound transmission loss (STL) of these metamaterials is compared to that of a simple expansion chamber, which serves as the base case. Various parameters, including Hilbert order (O), channel width (K), ventilated space (l), unit cell thickness (H), and the number of unit cells (N) are investigated. Initially, the transfer matrix method evaluates STL without considering thermoviscous effects, which are later incorporated in numerical simulations and impedance tube experiments. The parametric study reveals that increasing the Hilbert curve order decreases the fundamental frequency, while a higher K value increases it. Additionally, more unit cells enhance STL but reduce its broadband nature. Through the finite element method, band diagrams and eigenmodes of Hilbert and base configurations indicate that increased Hilbert orders result in more bands and correspondence between transmission loss spectra and band gaps. The study also identifies dipole resonance modes in the Hilbert structure, which induce a negative effective bulk modulus that contributes to STL. Real-time performance testing in a twin reverberation chamber demonstrates that the Hilbert structure achieves a 5-dB improvement in STL compared to the base configuration across the 700- to 1400-Hz range. These findings are essential for achieving broadband low-frequency noise reduction while allowing airflow.
    • Download: (1.901Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Hilbert Fractal Acoustic Metamaterials on Ventilation Noise Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4308071
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorKarthik, R.
    contributor authorSrinivasan, K.
    date accessioned2025-08-20T09:18:45Z
    date available2025-08-20T09:18:45Z
    date copyright1/15/2025 12:00:00 AM
    date issued2025
    identifier issn1048-9002
    identifier othervib_147_2_021003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4308071
    description abstractVentilation noise control devices often involve a trade-off between their size and ventilating performance, which limits the ability to reduce low-frequency sound in high-ventilation conditions. To address this challenge, the present study explores the use of Hilbert fractal-based design in ventilated metamaterials for improved acoustic performance. The sound transmission loss (STL) of these metamaterials is compared to that of a simple expansion chamber, which serves as the base case. Various parameters, including Hilbert order (O), channel width (K), ventilated space (l), unit cell thickness (H), and the number of unit cells (N) are investigated. Initially, the transfer matrix method evaluates STL without considering thermoviscous effects, which are later incorporated in numerical simulations and impedance tube experiments. The parametric study reveals that increasing the Hilbert curve order decreases the fundamental frequency, while a higher K value increases it. Additionally, more unit cells enhance STL but reduce its broadband nature. Through the finite element method, band diagrams and eigenmodes of Hilbert and base configurations indicate that increased Hilbert orders result in more bands and correspondence between transmission loss spectra and band gaps. The study also identifies dipole resonance modes in the Hilbert structure, which induce a negative effective bulk modulus that contributes to STL. Real-time performance testing in a twin reverberation chamber demonstrates that the Hilbert structure achieves a 5-dB improvement in STL compared to the base configuration across the 700- to 1400-Hz range. These findings are essential for achieving broadband low-frequency noise reduction while allowing airflow.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Hilbert Fractal Acoustic Metamaterials on Ventilation Noise Control
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4067415
    journal fristpage21003-1
    journal lastpage21003-14
    page14
    treeJournal of Vibration and Acoustics:;2025:;volume( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian