YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Harnessing Bayesian Deep Learning to Tackle Unseen and Uncertain Scenarios in Diagnosis of Machinery Systems

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 011 ):;issue: 001::page 11106-1
    Author:
    Kai, Zhou
    ,
    Zhou, Qianyu
    ,
    Tang, Jiong
    DOI: 10.1115/1.4067001
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Direct inverse analysis of faults in machinery systems such as gears using first principle is intrinsically difficult, owing to the multiple time- and length-scales involved in vibration modeling. As such, data-driven approaches have been the mainstream, whereas supervised trainings are deemed effective. Nevertheless, existing techniques often fall short in their ability to generalize from discrete data labels to the continuous spectrum of possible faults, which is further compounded by various uncertainties. This research proposes an interpretability-enhanced deep learning framework that incorporates Bayesian principles, effectively transforming convolutional neural networks (CNNs) into dynamic predictive models and significantly amplifying their generalizability with more accessible insights of the model's reasoning processes. Our approach is distinguished by a novel implementation of Bayesian inference, enabling the navigation of the probabilistic nuances of gear fault severities. By integrating variational inference into the deep learning architecture, we present a methodology that excels in leveraging limited data labels to reveal insights into both observed and unobserved fault conditions. This approach improves the model's capacity for uncertainty estimation and probabilistic generalization. Experimental validation on a lab-scale gear setup demonstrated the framework's superior performance, achieving nearly 100% accuracy in classifying known fault conditions, even in the presence of significant noise, and maintaining 96.15% accuracy when dealing with unseen fault severities. These results underscore the method's capability in discovering implicit relations between known and unseen faults, facilitating extended fault diagnosis, and effectively managing large degrees of measurement uncertainties.
    • Download: (5.334Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Harnessing Bayesian Deep Learning to Tackle Unseen and Uncertain Scenarios in Diagnosis of Machinery Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4307963
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorKai, Zhou
    contributor authorZhou, Qianyu
    contributor authorTang, Jiong
    date accessioned2025-08-20T09:14:36Z
    date available2025-08-20T09:14:36Z
    date copyright11/27/2024 12:00:00 AM
    date issued2024
    identifier issn2332-9017
    identifier otherrisk_011_01_011106.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4307963
    description abstractDirect inverse analysis of faults in machinery systems such as gears using first principle is intrinsically difficult, owing to the multiple time- and length-scales involved in vibration modeling. As such, data-driven approaches have been the mainstream, whereas supervised trainings are deemed effective. Nevertheless, existing techniques often fall short in their ability to generalize from discrete data labels to the continuous spectrum of possible faults, which is further compounded by various uncertainties. This research proposes an interpretability-enhanced deep learning framework that incorporates Bayesian principles, effectively transforming convolutional neural networks (CNNs) into dynamic predictive models and significantly amplifying their generalizability with more accessible insights of the model's reasoning processes. Our approach is distinguished by a novel implementation of Bayesian inference, enabling the navigation of the probabilistic nuances of gear fault severities. By integrating variational inference into the deep learning architecture, we present a methodology that excels in leveraging limited data labels to reveal insights into both observed and unobserved fault conditions. This approach improves the model's capacity for uncertainty estimation and probabilistic generalization. Experimental validation on a lab-scale gear setup demonstrated the framework's superior performance, achieving nearly 100% accuracy in classifying known fault conditions, even in the presence of significant noise, and maintaining 96.15% accuracy when dealing with unseen fault severities. These results underscore the method's capability in discovering implicit relations between known and unseen faults, facilitating extended fault diagnosis, and effectively managing large degrees of measurement uncertainties.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHarnessing Bayesian Deep Learning to Tackle Unseen and Uncertain Scenarios in Diagnosis of Machinery Systems
    typeJournal Paper
    journal volume11
    journal issue1
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    identifier doi10.1115/1.4067001
    journal fristpage11106-1
    journal lastpage11106-21
    page21
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 011 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian