YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Load Transfer Behavior of Multiangle Helical Piles Embedded in Silty Clay under Vertical and Oblique Loads

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2025:;Volume ( 151 ):;issue: 007::page 04025062-1
    Author:
    Zhiwen Sun
    ,
    Gangqiang Kong
    DOI: 10.1061/JGGEFK.GTENG-13234
    Publisher: American Society of Civil Engineers
    Abstract: Multiangle helical piles are used to support multidirectional loads. The load transfer behavior of inclined piles may differ from that of vertical piles. Vertical compressive and oblique uplift load field tests were conducted on a multiangle helical pile group and two single helical piles embedded in silty clay. The load-bearing capacities, group effects, load transfer behavior, earth pressure, and excess pore water pressure were investigated. The results show that the vertical compressive and oblique uplift capacities of the 10°-inclined single helical pile were improved by 12% and 95% compared to those of the vertical single helical pile, respectively. The inclined installation of helical piles significantly optimized the load transfer mechanism of the piles under oblique loads. The group efficiency of the multiangle helical pile group was approximately 102%, attributed to the increased pile spacing resulting from the inclined installation. During loading, the helices and pile toe together contribute more than 50% of the bearing capacities of helical piles. The earth pressure and excess pore water pressure around the grouped helical pile, particularly near the bottom helix, exhibited less variation than those around the single pile, suggesting a smaller disturbance in the surrounding soil.
    • Download: (2.606Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Load Transfer Behavior of Multiangle Helical Piles Embedded in Silty Clay under Vertical and Oblique Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4307432
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorZhiwen Sun
    contributor authorGangqiang Kong
    date accessioned2025-08-17T22:46:38Z
    date available2025-08-17T22:46:38Z
    date copyright7/1/2025 12:00:00 AM
    date issued2025
    identifier otherJGGEFK.GTENG-13234.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4307432
    description abstractMultiangle helical piles are used to support multidirectional loads. The load transfer behavior of inclined piles may differ from that of vertical piles. Vertical compressive and oblique uplift load field tests were conducted on a multiangle helical pile group and two single helical piles embedded in silty clay. The load-bearing capacities, group effects, load transfer behavior, earth pressure, and excess pore water pressure were investigated. The results show that the vertical compressive and oblique uplift capacities of the 10°-inclined single helical pile were improved by 12% and 95% compared to those of the vertical single helical pile, respectively. The inclined installation of helical piles significantly optimized the load transfer mechanism of the piles under oblique loads. The group efficiency of the multiangle helical pile group was approximately 102%, attributed to the increased pile spacing resulting from the inclined installation. During loading, the helices and pile toe together contribute more than 50% of the bearing capacities of helical piles. The earth pressure and excess pore water pressure around the grouped helical pile, particularly near the bottom helix, exhibited less variation than those around the single pile, suggesting a smaller disturbance in the surrounding soil.
    publisherAmerican Society of Civil Engineers
    titleLoad Transfer Behavior of Multiangle Helical Piles Embedded in Silty Clay under Vertical and Oblique Loads
    typeJournal Article
    journal volume151
    journal issue7
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-13234
    journal fristpage04025062-1
    journal lastpage04025062-12
    page12
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2025:;Volume ( 151 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian