YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Grouting-Induced Soil Behavior in Structured Clay

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2025:;Volume ( 151 ):;issue: 005::page 04025026-1
    Author:
    Fan-yan Meng
    ,
    Tong Chen
    ,
    Qi Jia
    ,
    Ren-peng Chen
    ,
    Cai-xia Song
    DOI: 10.1061/JGGEFK.GTENG-12815
    Publisher: American Society of Civil Engineers
    Abstract: Grouting below the tunnel invert is commonly used to remediate the settlement. Case histories demonstrate that the tunnel settlement still develops after the grouting is completed, especially in structured clay. The principal mechanism behind this is the grouting-induced soil disturbance, including the generation of excess-pore-water pressure (EPWP), degradation in soil structure, and changes in compressibility. To date, the mechanism behind the grouting-induced soil disturbance and responses of the ground heave is not yet fully understood. Toward this end, laboratory tests on grouting in mud with different sand content are carried out. Earth pressure, pore water pressure, shear stiffness, undrained shear strength, and ground heave are measured and analyzed. The results indicate that grouting causes increases in the lateral earth pressure and significant EPWP in the surrounding soil. Changes in undrained shear strength and shear stiffness are closely related to the comprehensive effects of increases in stress level and shear disturbance. The increased stress level leads to the growth in stiffness and strength, while shear disturbance causes degradation. The soils right nearby the grouting zone are subjected to significant shear disturbance and also increases in stress level. As a result, the soil stiffness and strength exhibit negligible change. In comparison, the soils above and below the grouting zone mainly experience an increase in stiffness and strength, because shear disturbance is comparatively smaller than the influence of the increases in stress level. Furthermore, the development of the vertical displacement of the ground surface demonstrates two stages of initial uplift during grouting and then settlement after the grouting is completed. In addition, stronger soil structure corresponds to larger settlement after the grouting is completed.
    • Download: (1.816Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Grouting-Induced Soil Behavior in Structured Clay

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4307397
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorFan-yan Meng
    contributor authorTong Chen
    contributor authorQi Jia
    contributor authorRen-peng Chen
    contributor authorCai-xia Song
    date accessioned2025-08-17T22:45:21Z
    date available2025-08-17T22:45:21Z
    date copyright5/1/2025 12:00:00 AM
    date issued2025
    identifier otherJGGEFK.GTENG-12815.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4307397
    description abstractGrouting below the tunnel invert is commonly used to remediate the settlement. Case histories demonstrate that the tunnel settlement still develops after the grouting is completed, especially in structured clay. The principal mechanism behind this is the grouting-induced soil disturbance, including the generation of excess-pore-water pressure (EPWP), degradation in soil structure, and changes in compressibility. To date, the mechanism behind the grouting-induced soil disturbance and responses of the ground heave is not yet fully understood. Toward this end, laboratory tests on grouting in mud with different sand content are carried out. Earth pressure, pore water pressure, shear stiffness, undrained shear strength, and ground heave are measured and analyzed. The results indicate that grouting causes increases in the lateral earth pressure and significant EPWP in the surrounding soil. Changes in undrained shear strength and shear stiffness are closely related to the comprehensive effects of increases in stress level and shear disturbance. The increased stress level leads to the growth in stiffness and strength, while shear disturbance causes degradation. The soils right nearby the grouting zone are subjected to significant shear disturbance and also increases in stress level. As a result, the soil stiffness and strength exhibit negligible change. In comparison, the soils above and below the grouting zone mainly experience an increase in stiffness and strength, because shear disturbance is comparatively smaller than the influence of the increases in stress level. Furthermore, the development of the vertical displacement of the ground surface demonstrates two stages of initial uplift during grouting and then settlement after the grouting is completed. In addition, stronger soil structure corresponds to larger settlement after the grouting is completed.
    publisherAmerican Society of Civil Engineers
    titleGrouting-Induced Soil Behavior in Structured Clay
    typeJournal Article
    journal volume151
    journal issue5
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-12815
    journal fristpage04025026-1
    journal lastpage04025026-13
    page13
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2025:;Volume ( 151 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian