YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Nano-CaCO3 and Nanosilica on the Strength and Deformation Behavior of Black Cotton Soil

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2025:;Volume ( 151 ):;issue: 008::page 04025080-1
    Author:
    Swapna Thomas
    ,
    S. Chandrakaran
    ,
    N. Sankar
    DOI: 10.1061/JGGEFK.GTENG-12672
    Publisher: American Society of Civil Engineers
    Abstract: This study investigated the impact of optimum dosages of nano-calcium carbonate (nano-CaCO3) and nanosilica on the engineering behavior of black cotton soil. The desired percentage of nano-addition, 2%, for both nanomaterials, was determined by analyzing the plasticity-compaction characteristics and the relative strength index values of treated samples. The study unveiled that the entire clay microstructure was transformed into a nanocrystalline matrix after treatment. The deviatoric strength enhancement with confining pressure and curing period was significant after treating the soil with either nano-CaCO3 or nanosilica. The nanosilica treatment was found to be more effective in improving the California bearing ratio (CBR) strength of black cotton soil samples compared with nano-CaCO3 stabilization. The addition of nanomaterials induced the formation of nanocrystalline hydrate gels and silica gel, resulting in an increased resistance to volumetric deformation under compressive stresses. The hydraulic conductivity of nano-treated samples dropped due to the highly tortuous networks between pores in the nano-crystalline structure. The experimental results were substantiated by analyzing the microstructure of nano-treated soils using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) techniques.
    • Download: (4.099Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Nano-CaCO3 and Nanosilica on the Strength and Deformation Behavior of Black Cotton Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4307386
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorSwapna Thomas
    contributor authorS. Chandrakaran
    contributor authorN. Sankar
    date accessioned2025-08-17T22:45:00Z
    date available2025-08-17T22:45:00Z
    date copyright8/1/2025 12:00:00 AM
    date issued2025
    identifier otherJGGEFK.GTENG-12672.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4307386
    description abstractThis study investigated the impact of optimum dosages of nano-calcium carbonate (nano-CaCO3) and nanosilica on the engineering behavior of black cotton soil. The desired percentage of nano-addition, 2%, for both nanomaterials, was determined by analyzing the plasticity-compaction characteristics and the relative strength index values of treated samples. The study unveiled that the entire clay microstructure was transformed into a nanocrystalline matrix after treatment. The deviatoric strength enhancement with confining pressure and curing period was significant after treating the soil with either nano-CaCO3 or nanosilica. The nanosilica treatment was found to be more effective in improving the California bearing ratio (CBR) strength of black cotton soil samples compared with nano-CaCO3 stabilization. The addition of nanomaterials induced the formation of nanocrystalline hydrate gels and silica gel, resulting in an increased resistance to volumetric deformation under compressive stresses. The hydraulic conductivity of nano-treated samples dropped due to the highly tortuous networks between pores in the nano-crystalline structure. The experimental results were substantiated by analyzing the microstructure of nano-treated soils using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) techniques.
    publisherAmerican Society of Civil Engineers
    titleEffect of Nano-CaCO3 and Nanosilica on the Strength and Deformation Behavior of Black Cotton Soil
    typeJournal Article
    journal volume151
    journal issue8
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-12672
    journal fristpage04025080-1
    journal lastpage04025080-15
    page15
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2025:;Volume ( 151 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian