YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data-Driven Radial Compressor Design Space Mapping

    Source: Journal of Turbomachinery:;2024:;volume( 147 ):;issue: 002::page 21001-1
    Author:
    Brind, J.
    DOI: 10.1115/1.4066229
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Estimates of turbomachinery performance trends inform system-level compromises during preliminary design. Existing empirical correlations for efficiency use limited experimental data, while analytical loss models require calibration to yield predictive results. From a set of 3708 radial compressor computations, this paper maps efficiency as a function of mean-line aerodynamics, and determines the governing loss mechanisms. An open-source turbomachinery design code creates annulus and blade geometry, then runs a Reynolds-averaged Navier–Stokes simulation for compressors sampled from the mean-line design space. Polynomial surface fits yield a continuous eight-dimensional representation of the design space for analysis, predicting efficiency with a root-mean-square error of 1.2% points. The results show a balance between surface dissipation in boundary layers and mixing loss due to casing separations sets optimum values for inlet Mach number, hub-to-tip ratio, de Haller number, and backsweep angle. Surface dissipation drives the effect of flow coefficient, with high surface areas at low values, and high velocities at high values. Compact compressor designs are achieved by increasing inlet Mach number, reducing hub-to-tip ratio, and minimizing the radial loading coefficient—all of which reduce efficiency approaching design space boundaries. An interactive web-based tool makes the results available to practising engineers, demonstrating large ensembles of automated designs and simulations as a higher-fidelity replacement for legacy empirical correlations in preliminary design.
    • Download: (1.254Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data-Driven Radial Compressor Design Space Mapping

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306471
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorBrind, J.
    date accessioned2025-04-21T10:34:28Z
    date available2025-04-21T10:34:28Z
    date copyright9/10/2024 12:00:00 AM
    date issued2024
    identifier issn0889-504X
    identifier otherturbo_147_2_021001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306471
    description abstractEstimates of turbomachinery performance trends inform system-level compromises during preliminary design. Existing empirical correlations for efficiency use limited experimental data, while analytical loss models require calibration to yield predictive results. From a set of 3708 radial compressor computations, this paper maps efficiency as a function of mean-line aerodynamics, and determines the governing loss mechanisms. An open-source turbomachinery design code creates annulus and blade geometry, then runs a Reynolds-averaged Navier–Stokes simulation for compressors sampled from the mean-line design space. Polynomial surface fits yield a continuous eight-dimensional representation of the design space for analysis, predicting efficiency with a root-mean-square error of 1.2% points. The results show a balance between surface dissipation in boundary layers and mixing loss due to casing separations sets optimum values for inlet Mach number, hub-to-tip ratio, de Haller number, and backsweep angle. Surface dissipation drives the effect of flow coefficient, with high surface areas at low values, and high velocities at high values. Compact compressor designs are achieved by increasing inlet Mach number, reducing hub-to-tip ratio, and minimizing the radial loading coefficient—all of which reduce efficiency approaching design space boundaries. An interactive web-based tool makes the results available to practising engineers, demonstrating large ensembles of automated designs and simulations as a higher-fidelity replacement for legacy empirical correlations in preliminary design.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleData-Driven Radial Compressor Design Space Mapping
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4066229
    journal fristpage21001-1
    journal lastpage21001-11
    page11
    treeJournal of Turbomachinery:;2024:;volume( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian