YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Resilient Circularity in Manufacturing: Synergies Between Circular Economy and Reconfigurable Manufacturing

    Source: Journal of Manufacturing Science and Engineering:;2024:;volume( 146 ):;issue: 011::page 110902-1
    Author:
    Hassan, Hadear
    ,
    Bushagour, Amira
    ,
    Layton, Astrid
    DOI: 10.1115/1.4065744
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Reconfigurability in manufacturing signifies a system's capacity to promptly adapt to evolving needs. This adaptability is critical for markets to maintain operations during unexpected disruptions, including weather anomalies, cyber-attacks, and physical obstructions. Concurrently, the concept of a circular economy is gaining popularity in manufacturing to mitigate waste and optimize resource utilization. Circular economy principles aim to reduce environmental impacts while maximizing economic benefits by emphasizing the reuse of goods and resource byproducts. The nexus between reconfigurability and the circular economy stems from their shared pursuit of sustainability and resilience. Interestingly, biological ecosystems also exhibit these traits, showcasing exceptional adaptability to disturbances alongside the ability to effectively utilize available resources during normal operations. This study explores various manufacturing system configurations to assess both their adaptability and connection to circular economy principles. Forty-four configurations are categorized based on layout (e.g., job shop, flow line, cellular) and analyzed using convertibility, cyclicity, and degree of system order metrics. A significant positive correlation (R2 = 0.655) is found between high convertibility and ecologically similar levels of structural cycling, suggesting that effective resource utilization supports adaptability in manufacturing systems. Furthermore, this paper proposes the existence of a possible “window of vitality” for cyclicity, as it demonstrates a significant correlation (R2 = 0.855) between the degree of system order and cyclicity. Identifying systems that strike a balance between redundancy, efficiency, convertibility, and cyclicity can aid manufacturing system designers and decision-makers in making choices that address increasing requirements for both sustainability and resilience.
    • Download: (1.018Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Resilient Circularity in Manufacturing: Synergies Between Circular Economy and Reconfigurable Manufacturing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306412
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorHassan, Hadear
    contributor authorBushagour, Amira
    contributor authorLayton, Astrid
    date accessioned2025-04-21T10:32:39Z
    date available2025-04-21T10:32:39Z
    date copyright9/11/2024 12:00:00 AM
    date issued2024
    identifier issn1087-1357
    identifier othermanu_146_11_110902.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306412
    description abstractReconfigurability in manufacturing signifies a system's capacity to promptly adapt to evolving needs. This adaptability is critical for markets to maintain operations during unexpected disruptions, including weather anomalies, cyber-attacks, and physical obstructions. Concurrently, the concept of a circular economy is gaining popularity in manufacturing to mitigate waste and optimize resource utilization. Circular economy principles aim to reduce environmental impacts while maximizing economic benefits by emphasizing the reuse of goods and resource byproducts. The nexus between reconfigurability and the circular economy stems from their shared pursuit of sustainability and resilience. Interestingly, biological ecosystems also exhibit these traits, showcasing exceptional adaptability to disturbances alongside the ability to effectively utilize available resources during normal operations. This study explores various manufacturing system configurations to assess both their adaptability and connection to circular economy principles. Forty-four configurations are categorized based on layout (e.g., job shop, flow line, cellular) and analyzed using convertibility, cyclicity, and degree of system order metrics. A significant positive correlation (R2 = 0.655) is found between high convertibility and ecologically similar levels of structural cycling, suggesting that effective resource utilization supports adaptability in manufacturing systems. Furthermore, this paper proposes the existence of a possible “window of vitality” for cyclicity, as it demonstrates a significant correlation (R2 = 0.855) between the degree of system order and cyclicity. Identifying systems that strike a balance between redundancy, efficiency, convertibility, and cyclicity can aid manufacturing system designers and decision-makers in making choices that address increasing requirements for both sustainability and resilience.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleResilient Circularity in Manufacturing: Synergies Between Circular Economy and Reconfigurable Manufacturing
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4065744
    journal fristpage110902-1
    journal lastpage110902-11
    page11
    treeJournal of Manufacturing Science and Engineering:;2024:;volume( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian